

version 6.2
Development System

DEVELOPER’S MANUAL
UPMACS Communications Inc.

Current for Development System v6.2.0

U.P.M.A.C.S. Developer’s Manual Table of Contents

Table of Contents

INTRODUCTION .. 1

HOW U.P.M.A.C.S. WORKS 2

STRUCTURE OF AN U.P.M.A.C.S. STATION... 2
SERIAL COMMUNICATION.. 3
STORAGE AND PROCESSING OF INFORMATION... 4
USER INTERFACE... 5
UPLINK PORT COMMUNICATIONS .. 7
DESIGNING AN U.P.M.A.C.S. STATION ... 8

DATABASE OBJECTS 11

VIEWING AND EDITING OBJECTS ... 11
SERIAL PORTS... 13

DEVICES .. 15
THE DEVICE INITIALIZATION SEQUENCES ... 16
THE POLLING SEQUENCE.. 18

REGISTERS.. 19
REGISTER LOG STRINGS... 24
AUTOMATIC CONTROLS... 26
BISTATE REGISTERS... 27
BISTATE VALUE CONTROLS... 28
DIGITAL REGISTERS.. 28
DIGITAL VALUE LOG STRINGS ... 29
DIGITAL VALUE CONTROLS ... 31
ANALOG REGISTERS... 33
ANALOG VALUE LOG STRINGS... 34
ANALOG VALUE CONTROLS... 37
ANALOG CALIBRATION SETTINGS... 37
STRING REGISTERS .. 39
STRING VALUE LOG STRINGS.. 39
STRING VALUE CONTROLS.. 41
SOURCES... 41

SERIAL DATA OBJECT SOURCES .. 42
SUMMARY SOURCES ... 43
REMOTE REGISTER VALUE SOURCES... 45
PARAMETER SOURCES .. 45
BIT MASK SOURCES .. 46
TIMEOUT SOURCES ... 48
PING RESULT SOURCES .. 48
GRAND SUMMARY SOURCES.. 49
REMOTE STATION ALARM SOURCES... 49
THRESHOLDS SOURCES .. 50
BIT COLLECTION SOURCES.. 52
BIT SECTIONS ... 54
FILTER SOURCES .. 56

SCL PROGRAMS.. 58
SCL PROGRAM SCHEDULING.. 59
THE SCL PROGRAM EDITOR... 61

 Page i

U.P.M.A.C.S. Developer’s Manual Table of Contents

SCL SYNTAX COLOURING... 66
SPECIFYING ARGUMENTS FOR SCL PROGRAMS... 67
SCL DATA DECODERS AND ENCODERS ... 67

NUMERICAL DECODERS (FLOATING-POINT NUMBER) .. 68
NUMERICAL DECODERS (UNSIGNED INTEGER) .. 70
NUMERICAL DECODERS (SET OF STRINGS) .. 72
STRING DECODERS ... 72
BOOLEAN DECODERS .. 73
NUMERICAL ENCODERS (FLOATING-POINT NUMBER)... 74
NUMERICAL ENCODERS (UNSIGNED INTEGER) .. 76
NUMERICAL ENCODERS (SET OF STRINGS) .. 78
STRING ENCODERS ... 79
BOOLEAN ENCODERS .. 79

SCREENS .. 80
THE SCREEN EDITOR.. 81
MANIPULATING GRAPHIC OBJECTS.. 86
IMAGES .. 88
STATIC OBJECTS .. 88
3D OBJECTS .. 91
INDICATORS ... 93

BISTATE INDICATORS ... 95
MULTISTATE INDICATORS... 98
DIGITAL INDICATORS.. 101
ANALOG INDICATORS ... 103
ANALOG INDICATOR EXPONENTIAL NOTATION ... 107
STRING INDICATORS .. 108
DIALS ... 110
GRAPHS.. 113
X-Y POSITION MARKERS ... 115
X-Y POSITION MARKER LABELS AND LINES... 119

CONTROLS... 120
LABELS .. 123

SABUS REQUESTS .. 125
SABUS QUERIES.. 126
RESPONSE DATA OBJECTS ... 128

REGISTER STATE RESPONSE DATA.. 128
DIGITAL REGISTER VALUE RESPONSE DATA (NUMBER)... 129
DIGITAL REGISTER VALUE RESPONSE DATA (STRINGS)... 130
ANALOG REGISTER VALUE RESPONSE DATA .. 131
STRING REGISTER VALUE RESPONSE DATA.. 132
REGISTER STATUS BITS RESPONSE DATA .. 133
PROCESSOR RESPONSE DATA... 135
FIXED DATA STRING RESPONSE DATA.. 135

SABUS COMMANDS.. 135
VARIABLE COMMAND PARAMETERS ... 137

STRING PARAMETERS.. 137
NUMBER PARAMETERS .. 138
BOOLEAN PARAMETERS... 139
SET OF STRINGS PARAMETERS .. 140
BITS PARAMETERS .. 141

TOOLS 142

TESTING SERIAL PORTS ... 142
DEVICE DRIVER LIBRARIES ... 144

 Page ii

U.P.M.A.C.S. Developer’s Manual Table of Contents

 Page iii

TESTING A STATION FILE .. 144
BATCH PROCESSING OF REGISTERS ... 145
BATCH PROCESSING OF SCL PROGRAMS ... 149
BATCH PROCESSING OF SABUS REQUESTS.. 151
TRANSFERRING REGISTER SOURCES BETWEEN REGISTERS .. 154
TRANSFERRING CODE BETWEEN PROGRAMS .. 154
BATCH PROCESSING OF GRAPHIC OBJECTS.. 155
DELETING OFF-SCREEN OBJECTS .. 157

MENUS 158

THE FILE MENU ... 158
THE EDIT MENU... 158
THE VIEW MENU .. 159
THE NEW MENU... 160
THE DRAW MENU... 160
THE ARRANGE MENU ... 161
THE SPECIAL MENU ... 162
THE WINDOW MENU... 163
THE HELP MENU.. 163

TOOLS BARS 164

THE MAIN TOOL BAR.. 164
THE EDIT TOOLS.. 164
THE NEW OBJECT TOOLS... 165
THE OBJECT LISTS TOOL BAR .. 166
THE DRAWING TOOLS .. 166
THE ARRANGING TOOLS... 168
THE GRID TOOLS ... 168
THE ALIGNMENT TOOLS ... 169
THE TRANSFORMATION TOOLS ... 169

APPENDICES 171

APPENDIX A: REGULAR EXPRESSIONS .. 171
APPENDIX B: ENTERING BINARY DATA .. 179
APPENDIX C: ENTERING SPECIAL CHARACTERS .. 181
APPENDIX D: UPLINK PORT PROTOCOL... 182
APPENDIX E: LEGACY OBJECTS.. 186

U.P.M.A.C.S. Developer’s Manual Introduction

THE U.P.M.A.C.S. DEVELOPMENT SYSTEM

Introduction

The U.P.M.A.C.S. Development System enables you to design and develop device drivers and
station files for U.P.M.A.C.S., the monitor, alarm, and control software by UPMACS Communica-
tion Inc. This manual assumes that you have read the manual for the U.P.M.A.C.S. Operate Sys-
tem, or are otherwise familiar with it.

The U.P.M.A.C.S. Development System allows you to create and edit two types of files:
U.P.M.A.C.S. station files (*.upmacs-station) files and U.P.M.A.C.S. device driver libraries
(*.upmacs-drivers) files. To create U.P.M.A.C.S. image libraries (*.upmacs-images) files, use the
U.P.M.A.C.S. Image Editor included with this package.

Station files are used by the Operate System to monitor and control a station. Device driver librar-
ies are not used by the Operate System. They are used to store ready made device drivers that
can then be added to a station file in the Development System.

You can edit one file at a time with the Development System. To edit more than one file at a time,
run the Development System multiple times.

The formats for station files and device driver libraries are compatible. You can save any device
driver library as a station file, and you can save any station file as a device driver library, as long
as it contains only device drivers. This means that there is no need for separate “New Station
File” and “New Device Driver Library” menu items. The type of a new file is first determined when
you save it.

The U.P.M.A.C.S. Development System supports entering special characters like the degree
symbol (“°”) and the micro symbol (“µ”) using special key combinations. See Appendix C: Enter-
ing Special Characters on page 181 for details.

 Page 1

U.P.M.A.C.S. Developer’s Manual How U.P.M.A.C.S. Works

HOW U.P.M.A.C.S. WORKS

Structure of an U.P.M.A.C.S. Station

The U.P.M.A.C.S. station files contain a complex database structure that describes the functional-
ity of a station. There are several different types of top-level database objects, and each may con-
tain one or more different kinds of embedded objects. Each top-level object has a tag and a
name. The tag is used by other database objects, and by SCL programs, to refer to the object.
The name is used to identify the object to the user.

There are six types of top-level objects in an U.P.M.A.C.S. database:

 Device drivers

 Serial ports

 Registers

 SCL programs

 Screens

 SABus requests

Some of these objects can contain other objects:

Device drivers contain data objects, commands, and device driver SCL programs

Serial ports contain devices

Screens contain static objects, indicators, controls, and labels

An U.P.M.A.C.S. station usually has a structure that looks something like this:

Screen

Register

Serial Port

SCL Program

SCL Program

SCL Program

Indicator Indicator Object

Screen

Indicator Indicator Control

Source

Register

Source

Register

Source

Device

Device

Data Level

Display Level

Serial
Communications
Level

Device Driver

Data object

Data object

Command

Response

Template

Response

Data object SCL Program

Device Driver

Device

(The station shown here has no uplink port communication capabilities. The SABus Request ob-
jects are described under Uplink Port Communications on page 7.)

 Page 2

U.P.M.A.C.S. Developer’s Manual How U.P.M.A.C.S. Works

Serial Communication

Serial Communication Objects

A brief description of the objects used for serial communications is given below. The objects are
described in more detail in their respective sections.

 Serial Ports
U.P.M.A.C.S. communicates with equipment via the serial ports of the computer. These ports
include the built-in ports (COM1 and COM2), ports on a multiport serial extension card, as well as
any special serial ports available to the computer (like ports on a network port server).

 The Polling Sequence
U.P.M.A.C.S. normally uses a sequence of polls to communicate with the equipment. Each poll
sends a command to a piece of equipment, and waits for a response, if applicable. Once the re-
sponse has been received, the next poll in the sequence is sent, and so on, until all polls have
been sent. The polling sequence is then started over. Each serial port has exactly one polling
sequence to service all equipment attached to it.

 Devices
Each serial port contains a number of devices. Each device represents one piece of equipment,
like an up converter or an amplifier. It contains information about the equipment, as well as data
objects to hold the information returned by the equipment.

 The Device Initialization Sequence
Each device may contain an initialization sequence. The initialization sequence consists of a se-
ries of commands sent to the equipment to initialize it.

 Device Drivers
Each device in a port uses a device driver to specify the behaviour of the equipment. There is one
device driver for each type of equipment, but devices with the same characteristics (make, model)
share a device driver. Device drivers are not tied to individual serial ports; devices on different
ports can share the same device driver. Device drivers can have parameters that are specified by
the device that uses the driver. Most drivers, for example, let the device specify a device address.

Device drivers can be stored in device driver libraries (*.upmacs-drivers files). See Device Driver
Libraries on page 144 for details on using device driver libraries.

 Commands
Each device driver contains a number of commands. A command contains a description of the
data that is sent to the computer, as well as a description of the data returned by the equipment, if
any.

 Data Objects
Each device driver contains a number of data objects, containing the information returned by the
equipment in response to a command. Data objects are used by register sources and SCL pro-
grams to access the data returned by the equipment.

The Polling Process

Most equipment sends data only in response to a command. U.P.M.A.C.S. will send commands
to the equipment continuously, and evaluate the data returned. Which commands are sent to
what piece of equipment on the port, and in what order, is determined by the polling sequence.

The polling sequence consists of a series of polls. Each poll in the polling sequence contains a
reference to a command in a device. The command, in turn, contains a description of the format
of the response data, if any.

Each poll is executed as follows:

 Send the command’s data string to the equipment

 Page 3

U.P.M.A.C.S. Developer’s Manual How U.P.M.A.C.S. Works

 Wait for the response, if necessary

 Check the data received from the equipment against the command’s response format

 If the data is OK, update all data objects that depend on the command

 Update all registers that depend on data objects whose values have changed

Some commands may not have a response. For polls with such commands, only the first step
applies.

Port Access Synchronization

Since U.P.M.A.C.S. is multitasking, access to the serial ports must be synchronized between the
different parts of the program, to prevent two commands from being sent to the same port at the
same time.

Usually, port synchronization is done automatically by U.P.M.A.C.S. If an SCL program sends a
command to a serial port, it has to wait until any polls that are currently being sent on the port
have finished. The polling sequence is then interrupted until the SCL program has finished send-
ing the command. There are two exceptions to this rule, however:

1. An SCL program might need to send several commands in a row without being inter-
rupted. Usually, if an SCL program sends two commands to a port, a poll from the polling
sequence will be sent in between to ensure that the port will continue to be serviced. An
SCL program can, however, request exclusive access to a serial port, in which case no
polls will be sent until the program has released the ports. See also Serial Communica-
tion in the SCL Language Reference.

2. It might be important that the polling sequence is not interrupted by an SCL program be-
tween two particular polls. This is usually the case if the first poll is a routing command to
a routing device. You can specify that a command in the polling sequence is a routing
command that routs a number of polls. U.P.M.A.C.S. will ensure that the routed com-
mands will be sent immediately after the routing command, without being interrupted by
an SCL program.

Storage and Processing of Information

U.P.M.A.C.S. uses the data received from device responses, as well as data from other sources
to report certain states, or trigger certain actions. U.P.M.A.C.S. might display a certain output
power as a result of a response received from a device, or it might switch a piece of equipment to
standby when an alarm occurs.

Registers

All infomation in U.P.M.A.C.S. is stored in registers. The data contained in a register is called its
value. Registers support a wide variety of methods for acquiring their data, as well as automatic
controls, logging, and much more. U.P.M.A.C.S. has four types of registers:

 bistate registers

 digital registers

 analog registers

 string registers

 Page 4

U.P.M.A.C.S. Developer’s Manual How U.P.M.A.C.S. Works

 Bistate registers
Bistate registers contain data that can be expressed as ON or OFF. They can thus have two
states, which is why they are called bistate registers. A bistate register might reflect the alarm
condition of a piece of equipment, a switch position for a two-position switch, or the local-remote
setting of a unit.

 Digital registers
Digital registers contain data that can be expressed as more than two states. A digital register
can hold up two 232 states, more than four billion. Each state is assigned a number between 0
and 4,294,967,295. A digital register might reflect the state of a three-position switch, or a chan-
nel selection between 1 and 10.

You can assign a name to each of a digital register’s value, describing what the value means.
The values of a register that holds the modulation type of a modem might be named “BPSK”,
“QPSK, “8PSK”, and “16AQM”, for example. This makes it easier to remember which value corre-
sponds to which setting.

Since the states of digital registers are expressed as numbers, they can also be used to hold nu-
merical data, as long as the range of values is from 0 to 4,294,967,295, and only integers are
used. A digital register can thus be used as a counter, for example.

 Analog registers
Analog registers hold numerical data. The values have a practically unlimited range, and can in-
clude fractions and negative numbers. Analog registers also support calibration of data. An ana-
log register will typically hold data like output power, temperature, or frequency.

Analog registers can also hold a whole set of numbers, rather than just a single one. You can use
analog registers to hold such information as the trace of a spectrum analyzer or the history of
some analog value.

 String registers
String registers hold text data or arbitrary binary data. A string register might contain a message
received from equipment, or it might simply store some data for future reference.

Sources

Each register has a source. The source tells the register where the data it represents comes
from. Most sources get the data from a data object in a device on a serial port. Other sources
summarize the information contained in one or more other registers. There are a great number of
different sources that get the data from different places.

SCL Programs

SCL programs are powerful tools used in many circumstances. The most common use of SCL
programs is to perform actions if the user presses a control button or a command is received on
an uplink port. SCL programs can also be used in register sources to decode the data received
from a piece of equipment, or to perform actions when a message is received from a device. SCL
programs can also be used to perform actions at startup, at regular intervals, or at scheduled
times (e.g. on the 1st of every month).

Device drivers can also contain SCL programs. These programs are executed by regular SCL
programs using the DRVCALL and DRVRUN SCL commands. See Overview Of SCL Programs in
the Developing Device Drivers manual for more information on device driver programs.

User Interface

U.P.M.A.C.S. communicates with the user through a graphical user interface. The information in
the registers is communicated to the user on the screen, and the user can click on buttons on the
screen to trigger certain actions.

 Page 5

U.P.M.A.C.S. Developer’s Manual How U.P.M.A.C.S. Works

Screens

U.P.M.A.C.S. organizes its visual data in screens. A screen contains information about everything
displayed in a single window or dialog. A screen can contain several types of objects:

 static objects

 indicators

 controls

 labels

Static Objects

Static objects always look the same, and never change their appearance. Static objects can be
lines, splines, rectangles, ellipses, text, or images. Images are loaded from the image library.

There is a special kind of static object called a 3D object. 3D objects have an etched, raised, or
sunken appearance.

Indicators

Indicators reflect the value of one or more registers. There are eight types of indicators:

 bistate indicators

 multistate indicators

 digital indicators

 analog indicators

 string indicators

 dials

 graphs

 X-Y position markers

Bistate indicators change the way they look depending on the ON/OFF state of any register.
Bistate indicators can be lines, splines, rectangles, ellipses, text, or images. Certain properties
like colour, fill style, and line thickness vary according to the alarm condition.

Multistate indicators are similar to bistate indicators, but they reflect the value of a digital register.

Digital indicators also reflect the value of a digital register, but they display the value directly as a
number, in a variety of formats. The text properties, like bold and italic, as well as the colour, can
change according to the ON/OFF state of the register.

Analog indicators are similar to digital indicators, but they display the value of an analog register.

String indicators are also similar to digital indicators, but they display the value of a string register
as ASCII text.

Dials reflect the value of an analog register using a slider or coloured bar.

Graphs show the values of an analog register with a size of more than one value as a bar or line
graph.

X-Y position markers are images that change their position within a region of the screen depend-
ing on the values of two analog registers. X-Y position markers can also change their appearance
depending on the ON/OFF state of any register, similar to bistate indicators.

 Page 6

U.P.M.A.C.S. Developer’s Manual How U.P.M.A.C.S. Works

Controls

Controls are buttons that the user can press. When a control button is pressed, it can perform
one of two actions:

 execute an SCL program, or

 show a screen

Labels

Labels are advanced objects. They are just like static text objects, with the added ability to in-
clude the title of a register in the text. This is useful for user configurable registers, where the user
can set the title of a register from within the Operate System using the “Configure Data” dialog
box.

Uplink Port Communications

Other systems can poll U.P.M.A.C.S. for register status and execute SCL programs over special
serial ports called uplink ports. The uplink ports protocol is based on Scientific Atlanta’s SABus
protocol standard. The exact protocol is described in Appendix D on page 182.

There are two types of SABus Requests: Queries and Commands.

SABus Command

Parameter

Opcode

Program

Parameter

Fixed Parameters

Parameter

SCL Program

SABus Query

Response Data

Response Data

Response Data

Opcode

Fixed Parameters

Response Data

Register

Register

SCL Program

Register

Register

Queries

When U.P.M.A.C.S. receives a query, it automatically generates a response from the values of
certain registers. You must specify which registers are used, and how the values are encoded.
You can also specify an SCL program that supplies some or all of the data. The response is then
sent automatically. Queries are typically used to let remote systems access status and alarm
data.

Commands

When U.P.M.A.C.S. receives a command, it calls an SCL program to process the command. You
can specify a list of parameters that need to be in the command packet; and U.P.M.A.C.S. will
decode the commands and let you access them from within the SCL program. U.P.M.A.C.S. does
not send a response to commands; the SCL program must generate and send the response it-
self. Queries are typically used to let remote systems perform certain actions, like switching
states or setting parameters. You can, however, also use a command to provide information to a
remote system, if you need complete control over the response data.

 Page 7

U.P.M.A.C.S. Developer’s Manual How U.P.M.A.C.S. Works

Designing an U.P.M.A.C.S. Station

Every station developer will have his own preferred way of designing a station. The following are
guidelines to get a new user on his way.

The first step in developing an U.P.M.A.C.S. station database is defining the protocol to be used
to communicate with the equipment. The protocol is defined in device drivers.

Step 1: Device Drivers

You need to create a device driver for each type of equipment with which you want U.P.M.A.C.S.
to communicate. If you have equipment that supports daisy chaining on a single port, you do not
have to write a separate driver for each device address. Device drivers can take parameters (like
a device address), which are specified when the driver is used.

It is not always necessary to develop new device drivers for a new station file. You can import
existing device drivers from device driver libraries.

See the Developing Device Drivers manual for information on how to develop device drivers.

Step 2: Serial Ports

Define one serial port for every physical port to which equipment is connected. Add a device for
each piece of equipment on the port.

You must then specify the polling sequence. A port need not contain a polling sequence; if you do
not create any polls, the port will simply remain idle until an SCL program sends a command.

Step 3: Registers

Define one register for every piece of information you want to display. If you need to keep track of
additional data internally, also create registers for that purpose. Some register sources use SCL
programs, in which case you must write the program before creating the register source.

Avoid using more that one register that contains the same piece of information.

Step 4: SCL Programs for Controls and SABus Commands

Write an SCL program for each type of action the user can take. If you have several pieces of
identical equipment, you do not need to write separate control programs for each. Write one pro-
gram, and use program arguments to specify which equipment the command is to be sent to.

Please remember that the user usually expects to see a confirmation dialog when he presses a
button. Make sure to include a confirmation in your program. The confirmation box should tell the
user exactly what will happen, and should warn him of potential unexpected results.

Programs are not automatically logged. If you desire logging of controls, you must include code to
log the commands that are sent. Only log a command that was actually executed, if the user can-
cels a command, it is usually undesirable to log it.

Make all messages to the user clear, understandable, and unambiguous. Avoid convoluted sen-
tences, avoid the passive voice, and avoid sentence fragments. Use simple grammar and proper
punctuation. A good guideline for user messages is to use the same language you would use to
speak to somebody in person. To test if a message is well written, ask yourself if this is how you
would say it if you were standing face to face with the user.

If a third-party system needs to be able to poll U.P.M.A.C.S. via an uplink port, you must also cre-
ate one SCL program for each action the third-party system can take. SABus commands, unlike
user control commands, should not require a confirmation.

 Page 8

U.P.M.A.C.S. Developer’s Manual How U.P.M.A.C.S. Works

Step 5: Screens

Lastly, create the screens. You will usually want to provide a screen containing an overview of the
entire station (usually a block diagram), which will be the screen visible initially. For large stations,
you may also want to have overview screens for different sub systems.

 If your station is very small, you can show all information on the main screen. For larger station,
show detail screens for groups of equipment, or individual pieces of equipment. Provide buttons
on the main screen and subsystem screens to switch between screens easily.

Screens come in two flavors: Windows and dialogs. Windows can be resized, tiled, maximized,
minimized, and more than one window can be displayed at the same time, and the user can navi-
gate between them. Dialogs are “modal,” that is, they cannot be resized, maximized, or mini-
mized, and the user cannot switch to a different screen when viewing a dialog screen.

Window screens are usually preferable because of their higher flexibility, but too many windows
can become confusing to the user. Use dialog screens for equipment details, especially in large
stations.

When designing your screens, keep the following things in mind:

 Avoid clutter. Leave sufficient space between objects. If information does not easily fit on
one screen, use two screens.

 Avoid large screens. A screen should usually be entirely visible when maximized. If you
use large screens, try to arrange them so that scrolling is required in one direction only,
preferably the vertical.

 Only use a custom background colour of the screen in special situations. Using a custom
background colour keeps the user from setting his preferred background colour in Win-
dows’ Display control panel.

 Use normal black 14pt Window font for most normal text. Avoid light or medium colours for
text, as they are not easily readable. Avoid text smaller than 14pt.

 Arrange Objects in a logical fashion. Use clear and unambiguous labels. You can group
objects using rectangles or lines. A rectangle around a piece of text is more effective in
highlighting it than large or bold text.

 Try to provide error and masked states for all indicators. Otherwise, the indicator might
disappear when equipment is disconnected, and the screen might look confusing.

 When you test your screens in the Operate System, look at them with and without control
privileges. Make sure no superfluous objects remain visible when the control buttons are
hidden, and that no important captions disappear.

Remember that the operator will be mostly looking at your screens. Working with even the best-
designed earth station with the latest in equipment can become very frustrating if the M&C sys-
tem is confusing or behaves inconsistently. Operators will usually spend more time looking at
your screens than doing anything else.

Step 6: SABus Requests

Note: It is usually not necessary to create SABus requests. You only need to create
SABus requests if you require that a third-party system can poll U.P.M.A.C.S. via an up-
link port.

Create an SABus query for every set of data that the remote system can request. Each request
can contain one or more register values or alarm states, as well as other data generated using an
SCL program. If the request needs parameters (a request for a switch position might specify the
switch number, e.g.), you must either specify a separate request object for each possible combi-

 Page 9

U.P.M.A.C.S. Developer’s Manual How U.P.M.A.C.S. Works

 Page 10

nation of parameters, or use an SABus command instead of a query. The disadvantage of using
commands instead of queries is that you must assemble and format the response data yourself,
whereas U.P.M.A.C.S. does the work for you if you use a query.

Create an SABus command for every action that the third-party system can take. Unlike queries,
it is not necessary to create a command for each possible combination of parameters that the
command takes. You can create different command objects for different sets of parameters, but
you can also specify additional parameters that U.P.M.A.C.S. will decode and place in SCL vari-
ables, and you can access the values of these parameters from within the command program.

You can also create SABus commands for requests for information. This is necessary if you can-
not or do not want to create a query for every possible set of parameters. Since commands can
decode parameters and make their values available to you in their program, you can write an
SCL program that determines which information should be included in the response based on
those parameters, and constructs the response accordingly. The disadvantage of this method is
that you have to collect and format the response data yourself. However, some of the work in as-
sembling the response is done for you: you do not have to worry about the start and end charac-
ters, the device address and opcode, or the checksum. These “wrapper” elements of the re-
sponse are added automatically by U.P.M.A.C.S., you only have to worry about the data. Please
remember to check the “Allow execution without signing on” check box in the program’s proper-
ties window, or the third-party system will not be able to use this request unless it is signed on to
U.P.M.A.C.S.

U.P.M.A.C.S. Developer’s Manual Database Objects

DATABASE OBJECTS

Viewing and Editing Objects

The Object Windows

The Development System provides a window for every type of object. The window contains a list
of all objects of that type in the station, as well as a number of buttons to add, delete, and edit
objects.

To show or hide the window, use the appropriate selection from the “View” menu. There will be a
checkmark next to all the windows that are visible.

You can change the size of the window in the usual way, i.e. by grabbing an edge with the mouse
and dragging it.

The lists show both name and tag of the object. You can resize the two columns by dragging the
edges of the column headers with the mouse. Click on the “Name” header to sort the objects by
name, click on the “Tag” header to sort them by tag.

The register window shows little icons next to the register to tell you what type it is:

 Bistate Register (status)

 Bistate Register (alarm)

 Digital Register

 Analog Register

 String Register

Creating New Objects

To create a new object, either select the appropriate item from the “New” menu, or press the
“New…” button in the window for the object type. The New Object dialog will appear. Enter prop-
erties for the new object, and press OK.

 Page 11

U.P.M.A.C.S. Developer’s Manual Database Objects

The register dialog has four buttons for creating registers, one for each type of register. The
SABus request dialog has two buttons for creating requests, one for queries and one for com-
mands. The New menu, however, has only one selection for registers and one for requests. If you
select “Register…” or “SABus Request…” from the “New” menu, you will be asked to choose the
type of register or request to create.

This is what the New SABus Command dialog looks like:

The “Tag” and “Name” fields appear in all of the dialogs.

The tag is a unique identifier for the object, and no two objects of the same type can have the
same tag. You cannot press the OK button until you have entered a tag for the object. The tag is
used by SCL Programs, and by other objects, to access the new object. You can never change
the tag of an object.

The name of the object is used to identify the object to the user. Even though it is possible to
have two objects with the same name, you should assign a unique name for each object to avoid
confusion. The name of an object can be changed at a later time, if need be.

Usually, there is no reason for the tag and name to be different. If you want the name of the ob-
ject to be the same as the tag, just leave the name field blank. The Development System will use
the tag as a name if you don’t specify a name.

Another way to create an object is to duplicate an existing object. Select the object you wish to
duplicate, and press the “Duplicate…” button. This will also pop up the New Object dialog, but all
the fields will already be filled in with values from the original object. Since all database objects
need to have unique tags, you must change at least the tag of the new object before pressing
OK.

If you create a screen or SCL program, you specify the properties in the New Object dialog. Once
you press OK, a window will appear that lets you place graphic objects on the screen or edit the
program code.

Editing Objects

To change an object after you have created it, select it in the object window, and press the
“Edit…” button. You can also just double-click on the object. The Edit Object dialog will appear.
The Edit Object dialog looks exactly like the New Object dialog, except that you cannot change
the tag field.

If you edit a screen or an SCL program, no dialog will appear. The Edit button will simply show
the window used to place graphical objects or edit the program code. To change the properties of

 Page 12

U.P.M.A.C.S. Developer’s Manual Database Objects

a screen or a program, select it and press the “Properties…” button. You can also select “Proper-
ties…” from the “Edit” menu when viewing the screen or program.

Deleting Objects

To remove an object from the station, select it and press the “Delete” button. You cannot delete
objects that are used by other objects; you must delete the other object first. Be careful, deleting
an object can never be undone!

Serial Ports

Serial ports provide information about communications settings of a port, and about what equip-
ment is connected to which port. They also contain the polling sequence to be used on that port.

The New Serial Port Dialog

 Tag:
Enter the tag by which the port is identified. Each port must have a unique tag.

 Name:
Enter the name of the serial port. Leave this field blank if you want to use the tag as name.

 COM Port:
Select the hardware serial port here. You can also enter the name of a port that does not appear
in the list directly. You must enter the complete name of the port, including the “COM.” Some se-
rial ports may not be called “COM1,” “COM2,” etc. If you have a hardware port with a different
name, e.g. “PORT-A1,” just enter that name.

 Settings:
Select the baud rate here, character format, and flow control to use for the port.

 Page 13

U.P.M.A.C.S. Developer’s Manual Database Objects

The character format consists of the number of data bits, the parity, and the number of stop bits.
8N1 stands for 8 data bits, No parity, 1 stop bit. 7E2 stands for 7 data bits, Even parity, 2 stop
bits, etc.

RTS/DTS and DTR/DSR are hardware flow control; XON/XOFF is software flow control.

 Line term:
Specify the line termination for the equipment connected to the port. The line termination is not
used with device commands. It is used only if the user pops up a terminal for the port, or if you
use the SENDSTR SCL Command. If the equipment attached to the port has no line termination,
this selection is without consequence.

 Port usage:
Select “Poll the port for data” to use a polling sequence for equipment that responds to com-
mands. Select “Wait for unsolicited data from the port” if the equipment will send data out of its
own accord.

Please note that so far, only legacy device drivers support waiting for unsolicited data from a port.

 Delay between commands:
Some poorly designed equipment will loose data or lock up if a second command is sent immedi-
ately after it responded to the first. If your equipment needs a delay between its response and the
next command, enter that delay here, in seconds. You can enter fractions of a second.

 Receive message control:
This field is used for legacy devices only. See Serial Ports in Appendix E: Legacy Objects on
page 198 for details.

 Devices:
Shows a list of all the devices attached to the port. Press the “Edit…”, “Delete”, “Duplicate…”, and
“New…” buttons to add, delete, or edit devices.

Any devices that have an initialization sequence will be initialized in the order shown here, where
the topmost device is initialized first. You can change the order of the devices by grabbing them
with the mouse and dragging them to a new position.

See Devices on page 15 for a description of the New Device dialog.

 Polling sequence:
This field is only avaliable if the port is configured to poll equipment. It shows the sequence of
commands used to poll the equipment. Press the “New…” button to add a new poll. Press the
“Delete” button to delete the selected poll. Press the “Edit…” button to edit the poll’s command
and routing value. You can use the “Duplicate” button to duplicate a single poll.

See The Polling Sequence on page 18 for a description of the New Poll dialog.

The polls will be sent in the order shown. You can change the order of the polls by grabbing them
with the mouse and dragging them to a new position.

You can use the “Duplicate Device…” button to duplicate all polls of a single device. When you
press this button, you will be prompted for a source device and a new device:

The old and new devices must use the same device driver.

 The “Test…” button:
Press this button to test the port. See Testing Serial Ports on page 142 for a description of the
Test Serial Port dialog.

 Page 14

U.P.M.A.C.S. Developer’s Manual Database Objects

Devices

Devices provide information about a piece of equipment connected to a serial port. The device
specifies which driver to use, and how to initialize the equipment.

You can also specify automatic controls to be executed when the device is enabled or disabled.
Disabling a device from the Devices dialog in the Operate System or from an SCL program auto-
matically masks all registers associated with the device, but it is sometimes necessary to perform
additional maintenance or to mask additional registers. The automatic controls allow you to do
this.

The New Device Dialog

 Tag:
Enter the tag by which the device is identified. Each device in a port must have a unique tag.

 Name:
Enter the name of the device. Leave this field blank if you want to use the tag as name.

 First-time initialization / Reinitialization after timeout / Common initialization:
Select which initialization commands should be displayed in the initialization sequence list. These
tabs only affect which commands are displayed, not which type of initialization the device has. All
devices always have all three types of initialization sequence (though some of them may be
empty).

See The Device Initialization Sequences below for details.

 Commands to send:
Shows a list of all the commands in the initialization sequence in the order in which they will be
sent. Use the tabs to select which initialization sequence is shown in the list.

Use the buttons to edit, delete, duplicate, and add new commands. You can grab the commands
with the mouse and drag them to a new position in the list to change their order.

See The Device Initialization Sequences below for details.

 Page 15

U.P.M.A.C.S. Developer’s Manual Database Objects

 Custom retries:
If your device needs a different number of retries than the default specified in the driver, check
the appropriate box, and enter the new number of retries.

The retry value is the number of times a command will be resent if there is a timeout. If you spec-
ify 1 in this field, commands will not be resent if there is a timeout. If you specify 3, U.P.M.A.C.S.
will try to send each command up to three times before logging a timeout.

 Don’t use the device driver’s init sequence:
Check this box to skip the initialization commands defined in the device driver. If you check this
box, only the initialization commands defined in this dialog will be sent.

 Driver:
Select the device driver that the device uses. Specify values for all the driver’s parameters im-
mediately below. In the sample dialog, the device uses a driver that has one digital parameter
called “Address”.

If you do not specify a value for a particular template parameter (i.e., leave the field blank), a de-
fault value will be used. The default value for bistate parameters is OFF, the default value for digi-
tal and analog parameters is 0, and the default value for string parameters is an empty string.

Show as decimal / Show as hex:
If the driver has any parameters of type digital that don’t have value names, you can select the
way you want to enter the parameter values here. Select “Show as decimal” to enter the values in
decimal, select “Show as hex” to enter the values in hexadecimal.

Show as text / Show as hex: (not shown)
If the driver has any parameters of type string, you can select the way you want to enter the pa-
rameter values here. See Appendix B: Entering Binary Data on page 179 for details on entering
binary data.

 Controls:
Select the automatic controls for enabling and disabling the device here, as well as the receive
message control for ports that wait for unsolicited data. The program arguments are shown in
parentheses after the names of the programs, but you only select the programs from the lists, not
the arguments. To change the arguments, use the “Args…” buttons. See Specifying Arguments
for SCL Programs on page 67 for a description of the Edit Program Arguments dialog.

Disable device:
Select the SCL program to be executed when the device is disabled. This control is also executed
on startup if the device is initially disabled.

Enable device:
Select the SCL program to be executed when the device is enabled. This control is not executed
on startup if the device is initially enabled.

The Device Initialization Sequences

The initialization sequence of a serial device consists of a number of command that are sent to
initialize the equipment. There are three types of commands in the initialization sequence:

 First-time initialization commands that are sent when the port is first opened

 Reinitialization commands that are sent when the device needs to be reinitialized after a
timeout or error

 Common initialization commands that are sent in both cases

 Page 16

U.P.M.A.C.S. Developer’s Manual Database Objects

Normally, the initialization sequence is defined in the device driver, but you can specify initializa-
tion commands to be sent in addition to those specified in the driver. The device also has the op-
tion to ignore the initialization sequence defined in the driver.

When the port is first opened, the initialization commands are sent in the following order:

1. First-time initialization commands specified in the device driver, in the order in which they
appear in the driver’s initialization sequence

2. Common initialization commands specified in the device driver, in the order in which they
appear in the driver’s initialization sequence

3. First-time initialization commands specified in the device, in the order in which they ap-
pear in the list

4. Common initialization commands specified in the device, in the order in which they ap-
pear in the list

When a timeout occurs, or when an error occurs that requires reinitialization, the initialization
commands are sent in the following order:

1. Reinitialization commands specified in the device driver, in the order in which they appear
in the driver’s initialization sequence

2. Common initialization commands specified in the device driver, in the order in which they
appear in the driver’s initialization sequence

3. Reinitialization commands specified in the device, in the order in which they appear in the
list

4. Common initialization commands specified in the device, in the order in which they ap-
pear in the list

The New Initialization Command Dialog

 Device:
Select the device to send the command to. Select <this device> to send the command to the de-
vice you are currently editing.

 Command:
Select the command to send. Specify values for all the command parameters immediately below.
In the sample dialog, the command has two digital parameter called “Port Number” and “Output
Bits”.

 Page 17

U.P.M.A.C.S. Developer’s Manual Database Objects

If you do not specify a value for a particular command parameter (i.e., leave the field blank), a
default value will be used. The default value for bistate parameters is OFF, the default value for
digital and analog parameters is 0, and the default value for string parameters is an empty string.

Show as decimal / Show as hex:
If the command has any parameters of type digital that don’t have value names, you can select
the way you want to enter the parameter values here. Select “Show as decimal” to enter the val-
ues in decimal, select “Show as hex” to enter the values in hexadecimal.

Show as text / Show as hex: (not shown)
If the command has any parameters of type string, you can select the way you want to enter the
parameter values here. See Appendix B: Entering Binary Data on page 179 for details on enter-
ing binary data.

 Keep with next:
Sometimes, it is necessary to treat a block of several commands as if it was a single command. If
you specify a number here, this poll and as many polls that follow it as you specify, will be treated
as an indivisible block of commands. This means that either all of the commands are sent, or
none. If any of the devices of any of those commands are disabled, or need reinitializing, the
whole block will be skipped, rather than just that one command.

Usually, this field is used for commands to routing devices that will not work properly if the com-
mands that they are supposed to route are not actually sent. For routing commands to routers
enter the number of polls routed here.

The Polling Sequence

The polling sequence of a serial port consists of a number of commands that are sent to the
equipment to retrieve data from it. The commands (polls) in the polling sequence are sent one
after the other, until all commands have been sent. The polling then starts over with the first
command in the sequence.

Usually, the polling sequence can be interrupted at any time if an SCL control needs to send a
command to the equipment. You can, however, group polls into indivisible blocks that will never
be interrupted. If a control needs to access the serial port, it must wait until the entire block of
polls has been sent. If you group polls into a block, either all of the polls are sent, or none. If any
of the devices of any of those polls are disabled, or need reinitializing, the whole block will be
skipped, rather than just that one poll. This is useful for commands to routing equipment that will
not work correctly if the polls they are supposed to route are not actually sent.

The New Poll Dialog

 Device:
Select the device to send the command to.

 Page 18

U.P.M.A.C.S. Developer’s Manual Database Objects

 Command:
Select the command to send. Specify values for all the command parameters immediately below.
In the sample dialog, the command has one digital parameter called “Backup”.

If you do not specify a value for a particular command parameter (i.e., leave the field blank), a
default value will be used. The default value for bistate parameters is OFF, the default value for
digital and analog parameters is 0, and the default value for string parameters is an empty string.

Show as decimal / Show as hex:
If the command has any parameters of type digital that don’t have value names, you can select
the way you want to enter the parameter values here. Select “Show as decimal” to enter the val-
ues in decimal, select “Show as hex” to enter the values in hexadecimal.

Show as text / Show as hex: (not shown)
If the command has any parameters of type string, you can select the way you want to enter the
parameter values here. See Appendix B: Entering Binary Data on page 179 for details on enter-
ing binary data.

 Keep with next:
If you specify a number here, this poll and as many polls that follow it as you specify, will be
treated as an indivisible block of polls.

Usually, this field is used for commands to routing devices that will not work properly if the com-
mands that they are supposed to route are not actually sent. For routing commands to routers
enter the number of polls routed here.

Registers

Registers are used to hold information in U.P.M.A.C.S. All data that you wish to display, or that
you wish to store for other purposes, will be stored in registers.

There are four types of registers:

 bistate registers

 digital registers

 analog registers

 string registers

Common Characteristics

All of the register types share certain characteristics. This section describes the things that are
common to all types of registers.

 The ON/OFF state:
Each register has an ON/OFF state. How that state is determined depends on the register type.
The ON/OFF state is used in four ways:

Display:
All types of indicators change the way they look according to the ON/OFF state of the register.

Logging:
The ON/OFF state can be logged. U.P.M.A.C.S. may log default log strings, or you can specify
custom log strings.

 Page 19

U.P.M.A.C.S. Developer’s Manual Database Objects

Automatic controls:
U.P.M.A.C.S. can execute an SCL program every time the register changes state. This is termed
an automatic control, as opposed to a manual control, which is triggered by the user by pressing
a control button on a screen.

Alarms:
The ON state of a register can trigger an alarm.

 Alarm level:
Each register has an alarm level that determines the way the ON/OFF state is handled. There are
four alarm levels:

No alarm level assigned:
The ON/OFF state does not trigger an alarm, and is not logged by default. Use this level for regis-
ters where the ON/OFF state is not used, or where it is only used internally. If you do not assign a
level to a register, you do not have to provide a way to determine the ON/OFF state.

Status:
The ON/OFF state does not trigger an alarm, but is logged by default. Use this level for registers
whose ON/OFF state represents a mode, setting, or other status. If you assign the Status level to
a register, you must provide a way to determine the ON/OFF state.

Alarm:
The ON state triggers an alarm, and is logged by default. Use this level for registers whose ON
state represents an alarm. If you assign the Alarm level to a register, you must provide a way to
determine the ON/OFF state.

Latching alarm:
The ON state triggers an alarm, and is logged by default. The alarm is also latched, which means
that it will not clear until it is acknowledged. Use this level for registers whose ON state repre-
sents an alarm, and if you want the alarm to remain active even if the alarm condition clears. If
you assign the Latching alarm level to a register, you must provide a way to determine the
ON/OFF state.

 Error state:
If a register has no value, it is in the error state. A registers will be in the error state until it has
been updated. For registers with sources that use serial data buffers, the register will be in the
error state until the buffer has been filled by a poll. A register will also be in the error state if the
data is inaccessible in some way, e.g. because of a serial communications failure, or because a
register it uses to get data from contains no data.

If a register is in the error state, it has no value or ON/OFF state. The value and state are not ac-
cessible to other registers or SCL programs, and they will not be displayed. You can define spe-
cial ways of representing the error state for indicators that would show the register’s value.

 Masked state:
A register can be masked to disable it. A masked register is said to be in the masked state, and it
has no value, no ON/OFF state, and no error state. The value and state are not accessible to
other registers or SCL programs, and they will not be displayed. You can define special ways of
representing the masked state for indicators that would show the register’s value.

Registers can be masked in one of three ways:

Manual masking:
The user can mask a register from within the U.P.M.A.C.S. Operate System. A user will usually
do this to disable individual “nuisance” alarms that are not functioning properly or are otherwise
irrelevant.

 Page 20

U.P.M.A.C.S. Developer’s Manual Database Objects

Auto masking:
Some register sources can automatically mask the register when the object that the value is
taken from is disabled. Register sources that use data from a serial device, for example, will auto
mask their register if an operator disables the device.

Internal masking:
SCL programs can mask and unmask registers internally using the INTMASK and INTUNMASK
commands described in the SCL Programming Language Help. You will usually want to internally
mask registers that relate to equipment or features that have been disabled, or to data that is not
applicable in a certain situation. You might, for example, mask the tracking signal level reading on
an antenna controller unit if satellite tracking has been disabled.

Note: you can also simulate manual masking from within an SCL program using the
MASK and UNMASK commands. This is not the same as masking internally: it is treated
the same as manual masking by the user. If you mask a register manually, the user can
unmask it. If you mask it internally, he cannot.

Each of these three ways of masking is maintained separately. Masking and unmasking the regis-
ter manually does not affect the auto or internal mask state; setting and clearing the internal mask
state from an SCL program does not affect the manual or auto mask states, and so on. A register
is in its masked state if it has been masked either manually or automatically or internally.

 Logging:
You can configure a register to write a message to the log every time its value changes. By de-
fault, values are not logged. To log the values of a register, you must provide custom log strings.
It is usually desirable to log the values of all registers that contain settings of equipment, but not
those that contain readings like temperature, etc. Since the values of such readings change con-
stantly, logging them would flood the log file with thousands of messages about slight changes of
the same value.

The ON/OFF state of a register can also be logged. Registers with an alarm level provide default
log string as follows:

Status: Register name on / Register name off

Alarm: Register name / Register name clear

where Register name is the name of the register. If an alarm is acknowledged, the following is
logged:

Register name acknowledged

Manual masking of a register can also be logged. The default log strings are as follows:

Register name masked / Register name unmasked

You can provide your own log strings, or you can prevent any of the default log string from being
logged.

 Automatic controls:
SCL programs can be attached to the register that are executed automatically whenever the reg-
ister’s value changes. Automatic controls can also be executed when the register goes into the
ON or OFF state, when it is acknowledged, or when it is masked or unmasked manually.

 Page 21

U.P.M.A.C.S. Developer’s Manual Database Objects

 User definable registers:
Registers can be designated as being user definable. This simply means that their name and
possibly some other settings can be configured by the user from within the U.P.M.A.C.S. Operate
System. This feature is usually used to provide spares for the purpose of future expansion, or to
provide custom labeling of transmit and receive chains.

To provide spares, define registers for them, and call them “Spare 1”, “Spare 2”, etc., or some-
thing similar, and make the registers user definable. The operator can then change the name
from within the U.P.M.A.C.S. Operate System to reflect the meaning of the register once it will be
used.

 Hiding registers:
You can hide a register’s indicators from the screen. Unlike masking, the hidden state does not
disable the functionality of the register; it merely hides it from the user. A hidden register still has
an ON/OFF state, an error state, and a masked state, and it still triggers alarms and writes mes-
sages to the log. Registers can only be hidden and unhidden from within SCL programs.

It is usually preferable to mask a register internally rather than hide it, as masking will disable the
register’s functionality as well. Hiding registers, however, can be useful in some cases:

Displaying alternate forms of the same data:
You might want to allow the user to display output power in Watts or dBm. In this situation, you
can create two registers, one containing the power in Watts, and one in dBm. You can then hide
one of the two registers and display only the other.

Displaying different sets of information in the same area of a screen:
You might want to display different sets of information in the same area of a screen. For example:
On an antenna control system screen, you might provide a set of summary alarms, like a system
alarm, a motion alarm, and a tracking alarm. Underneath, you could have an alarm details box
and a set of selection buttons, where the user can choose to view the individual alarms that be-
long for each summary alarm.

In this case, you would provide a set of indicators for each set of alarms, all occupying the same
space on the screen. If the user presses the “View motion alarms” button, you can then unhide
the motion alarms, and hide all other alarms. This can save space and reduce screen clutter.

Providing for different station configurations:
You might want to use the same station database for several almost identical earth stations. You
can provide for subtle differences in the stations by hiding some registers on some stations. For
example, one of the station might have an extra air conditioning unit. In that case, you could pro-
vide support for hiding the unit on the other systems.

If you decide to hide equipment, please keep in mind that hiding the equipment from the screen
does not disable it. If you are hiding equipment or alarms that are not present, make sure to dis-
able the appropriate devices and internally mask any extra registers, or timeout and error mes-
sages will be logged in the log file.

It is usually undesirable to hide equipment that may be added in the future. If you need room for
future expansion, the equipment that is not present should be masked, not hidden.

 Sources:
Each register has a data source. The source specifies where the value of the register is to be
taken from, and how. See Sources on page 41 for a description of the different register sources.

 Page 22

U.P.M.A.C.S. Developer’s Manual Database Objects

The New Register Dialogs

There are four different new register dialogs, one for each type of register. All four New Register
dialogs share the following fields, however:

The list below describes only those fields that appear in all four types of New Register dialogs.
For the remaining fields, see the section on the appropriate register type.

 Tag:
Enter the tag by which the register is identified. Each register must have a unique tag. Two regis-
ters cannot have the same tag, even if they are of different types.

 Name:
Enter the name of the register. Leave this field blank if you want to use the tag as name.

 Alarm level:
Select the alarm level for the register. If you select a level other than <none>, you will have to
specify a way to determine the ON/OFF state. Only bistate registers have a built-in mechanism.
See the specific New Register dialogs for details.

Only select “Status” if your register has an ON/OFF state. If you only use values, not the ON/OFF
state, select <none>.

 Log in file only:
Check this box if you want the log messages to be written to the log file only, and not to the log
window.

 Enable auto mask:
Check this box to enable the source to automatically mask the register.

 Enable manual mask:
Check this box to enable the operator to manually mask the register from within the Operate Sys-
tem. Clearing this check box does not prevent SCL programs from manually masking the register,
so you can still provide controls to manually mask and unmask the register, even if this check box
is cleared.

 Don’t transmit over network:
Check this box to prevent U.P.M.A.C.S. from transmitting this register across the network when
someone connects to the station. This means that the register will only appear on the local com-
puter, not on any remote computers. Use this flag for registers that are part of a network map, for
example.

 Initially hidden:
Check this check box if you want the register to be hidden when the station is loaded. Registers
can only be unhidden from within an SCL program. Please remember that hiding a register does
not disable it, the register is still updated and logged, automatic controls are executed, and
alarms are triggered.

 Page 23

U.P.M.A.C.S. Developer’s Manual Database Objects

 Source type:
Select the type of the register’s data source. See Sources on page 41 for a description of the in-
dividual source types. The settings for the source are shown at the bottom of the dialog, under
the heading “Source”.

 User definable:
Check this box to allow the user to change the name of the register and other settings from within
the U.P.M.A.C.S. Operate System.

 Ask to mask unmask:
This check box is only available for user definable registers. If you check this box, the register will
be manually masked originally, and must be unmasked by the operator. The operator will be
asked if he wants to unmask the register when he configures it, and if he wants to mask it if he
reverts to the unconfigured state.

 Configure log strings:
This check box is only available for user definable registers. Check this box to allow an operator
to specify his own log strings from within the Operate System.

 The “Log Strings…” button:
Press this button to specify custom log stings, or to prevent default log strings from being logged.

See Register Log Strings below for a description of the Edit Register Log Strings dialog.

 The “Controls…” button:
Press this button to specify automatic controls for the different events.

See Automatic Controls on page 26 for a description of the Edit Automatic Controls dialog.

Register Log Strings

You can specify custom log strings for different register states and values.

The percentage sign (“%”) character has a special meaning in register log strings. It will be re-
placed by the name of the register. If the register is called “HPA 2” then

% in remote mode

will be logged as:

HPA 2 in remote mode

To write a percentage sign (“%”) to the log, put two percentage signs (“%%”) in the log string:

100%% premium orange juice

will be logged as:

100% premium orange juice

Press the “Log Strings…” button in the New Register dialog to pop up the Edit Register Log
Strings dialog.

 Page 24

U.P.M.A.C.S. Developer’s Manual Database Objects

The Edit Register Log Strings Dialog

The Edit Register Log Strings dialog has two sections, one for editing the strings logged when the
value changes, and one for editing the strings logged when the ON/OFF state or masked state
changes. Use the “ Value Log Strings” / “On/Off State Log Strings” tabs to select which settings to
display These tabs only affect which settings are displayed, not which log strings the register has.
All registers (except bistate registers) have both types of log strings.

Bistate registers do not have a value and hence no value log strings. These tabs are not present
if you are editing the log strings of a bistate register.

The fields below only describe the settings for the ON/OFF state log strings. See Digital Value
Log Strings, Analog Value Log Strings, and String Value Log Strings on pages 29, 34, and 39,
respectively, for details on editing value log strings.

 Specifying the log strings
For each type of log string, you can select how it should be logged. Select “Default” to log the
default log string described in Registers under Logging. Select “Custom:” and enter a custom
message in the text box to log a custom log string. Select “None” to log nothing. If there is no de-
fault log string, selecting “None” is the same as selecting “Default”.

A sample of the log string, with %-symbols replaced with the register name, is shown for each
state.

 Fault clear/off:
Specify the log string for the OFF state of the register.

 Fault/on:
Specify the log string for the ON state of the register.

 Acknowledge:
Specify the string to log when an alarm is acknowledged. This string is not used for registers with
alarm levels other than Alarm and Latching alarm.

 Masking:
Specify the string to log when the register is manually masked.

 Page 25

U.P.M.A.C.S. Developer’s Manual Database Objects

 Unmasking:
Specify the string to log when the register is manually unmasked.

 Use old style default log strings:
Older versions of U.P.M.A.C.S. used to include the word “alarm” in some of the default log strings
for alarms and latching alarms. This is no longer the case. Any alarm registers you created with
an earlier version of the U.P.M.A.C.S. Development System will have this check box checked to
indicate that they will use the old-style logging that includes the word “alarm.” You should not
check this check box on newly created registers; this feature is only available so that alarms in
older databases will still be logged as before. You should include the word “alarm” in the title of
the register when you create alarms.

Automatic Controls

You can specify automatic controls for different register states and values. The automatic control
for a particular state will be executed when the register goes into that state.

Press the “Controls…” button in the New Register dialog to pop up the Edit Automatic Controls
dialog.

The Edit Automatic Controls Dialog

The Edit Automatic Controls dialogs for the different types of register have different fields for
specifying automatic controls to be executed when the value of the register changes. See Bistate
Value Controls, Digital Value Controls, Analog Value Controls, and String Value Controls on
pages 28, 31, 37, and 41, respectively, for details.

 Specifying the control programs and arguments
Select the SCL programs you want to be executed when the register goes into the different
states. The program arguments are shown in parentheses after the names of the programs, but
you only select the programs from the lists, not the arguments. To change the arguments, use the
“Args…” buttons. See Specifying Arguments for SCL Programs on page 67 for a description of
the Edit Program Arguments dialog.

 Fault clear/off:
Select the SCL program to be executed when the register goes into the OFF state.

 Fault/on:
Select the SCL program to be executed when the register goes into the ON state.

 Acknowledge:
Select the SCL program to be executed when the register is acknowledged. This control is not
used for registers with alarm levels other than Alarm and Latching alarm.

 Page 26

U.P.M.A.C.S. Developer’s Manual Database Objects

 Masking:
Select the SCL program to be executed when the register is manually masked.

 Unmasking:
Select the SCL program to be executed when the register is manually unmasked.

Bistate Registers

Bistate registers do not have a value separate from the ON/OFF state. All the information con-
tained in a bistate register is expressed by its ON/OFF state. Use a bistate register for data that
can be expressed as two mutually exclusive states, like alarm/alarm clear, local/remote mode, or
HV on/off.

Bistate registers have a response time. The response time is the minimum amount of time a state
change has to last in order to be reflected by the register. If the register reflects an alarm, for ex-
ample, and the response time is 1s, then the alarm will only be registered if it persists for 1s. If the
alarm is cleared within 1s, the register will not go into its ON state. This is useful to eliminate er-
roneous alarms due to relay chatter or noise.

The New Bistate Register Dialog

The list below describes only those fields that are specific to the New Bistate Register dialog. For
the remaining fields, see The New Register Dialogs on page 23.

 Configure polarity:
This check box is only available for user definable registers. Check this box to allow an operator
to invert the ON/OFF states of the register from the Operate System. This is useful for spares on
data acquisition units that might be connected to normally open or normally closed alarm contacts
in the future.

 Response time:
Enter the response time, in seconds. This is the minimum time a change in the ON/OFF state
must last in order to be registered. You can enter fractions of a second. Enter 0 to register state
changes immediately.

 Allow user to change response time:
Check this box to allow the operator to adjust the response time of the register from within the
Operate System.

 Page 27

U.P.M.A.C.S. Developer’s Manual Database Objects

Bistate Value Controls

You can specify a control to be executed every time the value of a bistate register changes. Since
the value of a bistate register is the same as its state, this control will be executed when the regis-
ter goes into its OFF state and when it goes into its ON state.

The Edit Automatic Controls Dialog for Bistate Registers

The list below only shows the fields for value controls. For the other fields, see Register Log
Strings on page 24.

 Value change:
Select the SCL program you want to be executed when the value changes. The program argu-
ments are shown in parentheses after the names of the program, but you only select the program
from the list, not the arguments. To change the arguments, use the “Arguments…” buttons. See
Specifying Arguments for SCL Programs on page 67 for a description of the Edit Program Argu-
ments dialog.

Digital Registers

The value of a digital register is an integer between 0 and 4,294,967,295. Use digital registers for
data that can be expressed as three or more discreet states, like modulation type, selected satel-
lite, or local / remote front panel / computer mode. You can also use digital registers to contain a
number, as long as the number has no fractions, and will not exceed the range of a digital indica-
tor. This includes channel numbers and counters, for example.

You can specify a name for different values of a digital register. The value names can be used in
value log strings, in digital indicators, and in SCL programs. They are also shown in the pop-up
list used for selecting the states values of multistate indicators. You should use value names if a
digital parameter represents a number of different settings or choices (e.g. local / remote / remote
front panel mode), rather than an actual number.

The ON/OFF state of a digital register is determined by its alarm values. The register will be in the
ON state if the value is one of the alarm values you specified; otherwise it will be in the OFF
state.

 Page 28

U.P.M.A.C.S. Developer’s Manual Database Objects

The New Digital Register Dialog

The list below describes only those fields that are specific to the New Digital Register dialog. For
the remaining fields, see The New Register Dialogs on page 23.

 Alarm values:
Enter all the values of the register that trigger the ON state. Separate the values with commas.
You must specify at least one alarm value if you have selected an alarm level other than <none>.

 The “Value Names…” button:
Press this button to assign names to the values of the register.

If you do not specify any value names for a register that has a serial data object source, and the
object the register gets its value from has itself value names, then the register’s values will auto-
matically have the same names as the data object’s. If you do specify value names in the regis-
ter, the data object’s value names will not be used.

Digital Value Log Strings

You can specify a log string for different values of a digital register. You can also specify a single
log string to be used for every value of the register for which you did not specify a log string.

The log string for every other value actually writes the value, or the value’s name, to the log. A
prefix string is prepended to the value, and a suffix string is appended, before it is logged.

 Page 29

U.P.M.A.C.S. Developer’s Manual Database Objects

The Edit Register Log Strings Dialog for Digital Registers

The list below only shows the fields for value controls. For the other fields, see Register Log
Strings on page 24.

 Log strings for specific values:
Shows a list of all the values that will be logged, together with their log strings. Use the buttons to
create, delete, duplicate, or edit log strings.

The New Value Log String dialog

Enter the value for which you want the string to be logged, and the string you want to log. You
can look at the sample to see what the log string will look like with %-symbols replaced by the
register name.

 Other Values:
Select which other values to log.

Don’t log other values:
Select this option if you want only those values logged that appear in the “Log strings for specific
values” list.

Log all other values:
Select this option if you would like to log all values.

 Page 30

U.P.M.A.C.S. Developer’s Manual Database Objects

Log only on state values:
Select this option if you would like to log only the values you listed under “Alarm values” in the
register dialog.

Log only off state values:
Select this option if you would like to log only the values you didn’t list under “Alarm values” in the
register dialog.

Log the following values:
Select this option if you would like to log only specific values. Enter the values to log, separated
by commas, in the edit field on the right.

Log all values except:
Select this option if you would like to log all but a number of specific values. Enter the values you
don’t want to log, separated by commas, in the edit field on the right.

Note that values listed under “Log strings for specific values” will always use the log string you
specified there, and never the one for other values.

 Prefix:
Enter the value prefix here. The prefix is prepended to the value before logging it. %-symbols in
the prefix will be replaced with the register’s name, as described in Register Log Strings on page
24.

 Suffix:
Enter the value suffix here. The suffix is appended to the value before logging it. %-symbols in
the suffix will be replaced with the register’s name, as described in Register Log Strings on page
24.

 Base:
Select the numerical base that values are to be shown in.

 Minimum digits:
Select the minimum number of digits to show. If the value has less digits than is specified here, it
is padded with zero to the required number of digits.

 Use value names:
Check this box to log the names of values rather than the values themselves. Values that have no
name will always be logged as numbers.

 Sample:
Shows a sample of how values will be logged. The value shown here is the same as that dis-
played by digital indicators.

Digital Value Controls

You can specify an automatic control to be executed when a digital register assumes certain val-
ues. You can also specify a single control to be executed for every value of the register for which
you did not specify a different control.

 Page 31

U.P.M.A.C.S. Developer’s Manual Database Objects

The Edit Automatic Controls Dialog for Digital Registers

The list below only shows the fields specific to digital registers. For a description of the other
fields, see Automatic Controls on page 26.

 Controls for specific values:
Shows a list of all the values that have automatic controls defined, together with the programs
that will be executed.

Use the buttons to create, delete, duplicate, or edit controls.

The New Value Control dialog

Enter the value for which you want the control to executed, select the program from the list, and
specify the arguments. See Specifying Arguments for SCL Programs on page 67 for more infor-
mation.

 Other Values:
Select the SCL program you want to be executed for all values you didn’t specify in the “Controls
for specific values” list. The program arguments are shown in parentheses after the names of the
program, but you only select the program from the list, not the arguments. To change the argu-
ments, use the “Arguments…” buttons. See Specifying Arguments for SCL Programs on page 67
for a description of the Edit Program Arguments dialog.

 Page 32

U.P.M.A.C.S. Developer’s Manual Database Objects

Analog Registers

The value of an analog register is a number. The number can contain fractions, and has a virtu-
ally unlimited range. Use analog registers for things like frequencies, power levels, meter read-
ings, Eb/N0 values, etc.

The ON/OFF state of an analog register is determined by a low and high limit. The register is in
the OFF state if the value lies within the limits and in the ON state if the value lies outside.

You can configure an analog register to hold more than just one single value. An analog register
can have a size of more than one value, which means it holds a whole set of values, numbered
from 1 to the size of the register. You can access the values individually, you can display the
greatest and least of the values, or you can display all of the values as a bar or line graph. Use
analog registers with a size greater than 1 value to hold any data with more than one data point,
e.g. a spectrum analyzer’s trace.

A special application of analog registers with more than one value is showing the development
over time (history) of another analog value. To create a history for a register called “Receive sig-
nal strength”, for example, create a second register called “Receive signal strength history” (or
something similar) with a size of 100 or so values. The exact number of values depends on how
many data points you whish to remember. Then, write an SCL program that gets the value of
“Receive signal strength” using the ANAVAL SCL function and then sets the value of “Receive
signal strength history” using the SETANAVAL SCL command. Configure that program to run
every time you want a new data point added, either at fixed intervals, or at fixed times. See also
SCL Programs and SCL Program Scheduling for details on how to do this.

The values of analog registers can be calibrated from within the Operate System.

The New Analog Register Dialog

The list below describes only those fields that are specific to the New Analog Register dialog. For
the remaining fields, see The New Register Dialogs on page 23.

Size:
Enter the number of values the register has. For a single value, enter 1. Please note that you can-
not configure the size of a register that has a serial data object source. Registers with serial data
objects sources always have the same size as the data object that they get their value from.

 Page 33

U.P.M.A.C.S. Developer’s Manual Database Objects

Allow user to change limits:
Check this box if you want to allow the operator to change the high and low limits from within the
U.P.M.A.C.S. operate system.

Allow user calibration:
Check this box if you want to allow the user to calibrate the value from within the U.P.M.A.C.S.
Operate System. You should usually check this box for values that need calibration.

Configure units:
This check box is only available for user definable registers. Check this box to allow an operator
to specify the units (e.g. Watts, MHz, °C) of the data from within the operate system. The units do
not influence the functionality of the register, but they are displayed in the suffix of analog indica-
tors. See Analog Indicators for details on displaying the value of analog registers.

Configure precision:
This check box is only available for user definable registers. Check this box to allow an operator
to specify the number of digits after the decimal point shown in analog indicators for this register.
See Analog Indicators for details on displaying the value of analog registers.

Low limit, high limit:
Enter the low and high limits here. Leave a field blank if you do not want the corresponding limit.
You must specify at least one limit if you have selected an alarm level other than <none>.

The “Calibration…” button:
Press this button to add or remove calibration points, and to configure calibration curve smooth-
ing.

See Analog Calibration Settings on page 37 for a description of the Calibration Data dialog.

Analog Value Log Strings

You can specify a string to be written to the log file every time the value of an analog register
changes. The log string writes the register value to the log. A prefix string is prepended to the
value, and a suffix string is appended, before it is logged.

You can specify a minimum change between values that are logged. If you specify a minimum
change, the value will not be logged until it has changed by at least the amount specified from the
last value logged.

You can modify the register’s value before logging it. The number logged is calculated from the
value of the register as follows:

logged value = register value · factor + offset

To display the value unaltered, use a factor of 1 and an offset of 0.

Note: The values of analog registers with a size of more than one value cannot be
logged.

 Page 34

U.P.M.A.C.S. Developer’s Manual Database Objects

The Edit Register Log Strings Dialog for Analog Registers

The list below only shows the fields for value log strings. For the fields for the ON/OFF-state log
strings, see Register Log Strings on page 24.

 Selecting which values to log:
Select which values to log at the top right of the dialog.

Don’t log any values:
Select this option if you don’t want any values to be logged.

Log all values:
Select this option if you would like to log all values.

Log only on state values:
Select this option if you would like to log only values outside the register’s low and high limit.

Log only off state values:
Select this option if you would like to log only values within the register’s low and high limit.

Log values within or on the following limits:
Select this option if you would like to log only a specific range of values. Enter the limits in the
“From” and “to” fields. Values that are exactly on the limit will be logged if you select this option.

Log values outside or on the following limits:
Select this option if you would like to log all values except a specific range of values. Enter the
limits in the “From” and “to” fields. Values that are exactly on the limit will be logged if you select
this option.

Log values strictly within the following limits:
Select this option if you would like to log only a range of values. Enter the limits in the “From” and
“to” fields. Values that are exactly on the limit will not be logged if you select this option.

 Page 35

U.P.M.A.C.S. Developer’s Manual Database Objects

Log values strictly outside the following limits:
Select this option if you would like to log all values except a certain range of values. Enter the
limits in the “From” and “to” fields. Values that are exactly on the limit will not be logged if you se-
lect this option.

 Don’t log changes smaller than:
Check this box to prevent logging if the value changes by less than a certain amount. A new
value will not be logged until it differs by at least the number you enter here from the last value
logged. If you check the “dB” box, the change you enter is a relative change in dB, not an abso-
lute one.

 Prefix:
Enter the value prefix here. The prefix is prepended to the value before logging it. %-symbols in
the prefix will be replaced with the register’s name, as described in Register Log Strings on page
24.

 Units spacer:
Enter a spacer to place between the value and any units string the user may have configured for
the register. This string is only used for user configurable registers that have the “configure units”
check box checked. If the user configured a units string for the register, the spacer, followed by
the units will be inserted between the value and the suffix.

%-symbols in the separator will be replaced with the register’s name, as described in Register
Log Strings on page 24.

 Suffix:
Enter the value suffix here. The suffix is appended to the value before logging it. %-symbols in
the suffix will be replaced with the register’s name, as described in Register Log Strings on page
24.

 Number of decimals:
Enter the number of digits to appear after the decimal point. The number will be rounded to the
specified number of decimals, or padded with zeros to the right, as necessary.

 Show plus sign:
Check this box if you want a plus sign to be prepended to positive numbers.

 Use exponential notation:
Check this box to use exponential (scientific) notation for the value.

 Exponent marker:
Enter the exponent marker here. The exponent marker is placed between the mantissa and the
exponent. Usually, the exponent marker should be “ E” or “ e”.

 Number of digits:
Enter the number of digits you want to show in the exponent.

 Show plus sign:
Check this box if you want a plus sign to be prepended to positive exponents.

 Factor:
Enter the factor with which the register value is to be multiplied before logging it. The factor is
applied before the offset.

 Offset:
Enter the offset that is to be added to the register value before logging it. The offset is applied
after the factor.

 Sample:
Shows a sample of how values will be logged. The value shown here is the same as that dis-
played by analog indicators.

 Page 36

U.P.M.A.C.S. Developer’s Manual Database Objects

Analog Value Controls

You can specify a control to be executed every time the value of an analog register changes. You
can specify a minimum change between values. If you specify a minimum change, the control will
not be executed until the register’s value has changed by at least the amount specified from the
last time the control was executed.

Note: The values of analog registers with a size of more than one value cannot trigger a
control.

The Edit Automatic Controls Dialog for Analog Registers

The list below only shows the fields for value controls. For the other fields, see Register Log
Strings on page 24.

 Value change:
Select the SCL program you want to be executed when the value changes. The program argu-
ments are shown in parentheses after the names of the program, but you only select the program
from the list, not the arguments. To change the arguments, use the “Arguments…” buttons. See
Specifying Arguments for SCL Programs for a description of the Specifying Arguments for SCL
Programs on page 67.

 Don’t execute for changes smaller than:
Check this box to prevent execution if the value changes by less than a certain amount. The con-
trol will only be executed once the value differs by at least the number you enter here from the
value when the control was executed last. If you check the “dB” box, the change you enter is a
relative change in dB, not an absolute one.

Analog Calibration Settings

You can add some default calibration points to an analog register from within the Development
System. Usually there is no need to do this, since any analog value will have to be calibrated from
within the Operate System.

You can specify a polynomial curve that is to be fitted to the calibration points.

 Page 37

U.P.M.A.C.S. Developer’s Manual Database Objects

The Calibration Data Dialog

 Calibration points:
Shows all the calibration points currently defined. Raw data is shown on the left, calibrated data
on the right. Use the “New…” and “Delete” buttons to add and delete calibration points.

Use the “Import” button to import calibration points from a calibration that you performed from
within the Operate System. To do this, do the following:

 Create the register and check the “Allow user calibration” check box

 Save the database and load it into the U.P.M.A.C.S. Operate System. Do not close the
Development System.

 Calibrate the value

 Go back to the Development System and bring up the Calibration Data dialog for the reg-
ister. You do not need to reload the database.

 Press the “Import” button in the Calibration Data dialog.

The calibration points you added in the Operate System will appear in the list. Press OK to accept
them, or modify them first.

 Fit a polynomial to the calibration points:
Check this box to use a polynomial curve fitted to the calibration points to calculate the calibrated
value. If you leave this box blank, the values will be calculated by interpolating or extrapolating
from the two nearest calibration points.

y = c + a1 x + a2 x2 + a3 x3 + …:
Select this option if the calibrated value depends directly on the raw value.

log y = c + a1 x + a2 x2 + a3 x3 + …:
Select this option if the calibrated value depends exponentially on the raw value.

 Degree of the polynomial:
Select the degree of the polynomial. The degree is the highest exponent used. To fit a straight
line, specify a degree of 1. To fit a parabola, specify 2.

 Page 38

U.P.M.A.C.S. Developer’s Manual Database Objects

 Force c to be 0 (no constant offset):
Check this box to force the constant offset c to be 0 in the equation you chose. This means that
the calibrated value will be 0 if the raw value is 0, or the logarithm of the calibrated value will be 0
(and calibrated value will be 1), depending on the equation you chose.

String Registers

The value of a string register is arbitrary binary data, including text. You can use string registers
for things like satellite names, equipment descriptions, etc..

The ON/OFF state of a string register is determined using a number of alarm triggers. Each trig-
ger is a regular expression. If the value of the register matches any of the triggers, the register
goes into its ON state.

The New String Register Dialog

The list below describes only those fields that are specific to the New String Register dialog. For
the remaining fields, see The New Register Dialogs on page 23.

 Alarm Triggers:
Shows a list of all alarm triggers. Use the buttons to create, delete, and edit alarm triggers. The
register goes into the ON state if its value matches any of the triggers.

See Appendix A: Regular Expressions on page 171 for details.

String Value Log Strings

You can specify a string to be written to the log file every time the value of a string register
changes. The log string writes the register value to the log. A prefix string is prepended to the
value, and a suffix string is appended, before it is logged.

 Page 39

U.P.M.A.C.S. Developer’s Manual Database Objects

The Edit Register Log Strings Dialog for String Registers

The list below only shows the fields for value log strings. For the fields for the ON/OFF-state log
strings, see Register Log Strings on page 24.

 Don’t log any values:
Select this option if you don’t want any values to be logged.

 Log all values:
Select this option if you would like to log all values.

 Log only on state values:
Select this option if you would like to log only values outside the register’s low and high limit.

 Log only off state values:
Select this option if you would like to log only values within the register’s low and high limit.

 Log only values that match the pattern:
Select this option if you would like to log only those values that match a regular expression pat-
tern.

 Log only values that don’t match the pattern:
Select this option if you would like to log only those values that do not match a regular expression
pattern.

 Pattern:
If you selected “Log only values that match the pattern” or “Log only values that don’t match the
pattern”, enter the regular expression for the pattern here. See Appendix A: Regular Expressions
on page 171 for details on regular expressions.

 Prefix:
Enter the value prefix here. The prefix is prepended to the value before logging it. %-symbols in
the prefix will be replaced with the register’s name, as described in Register Log Strings on page
24.

 Page 40

U.P.M.A.C.S. Developer’s Manual Database Objects

 Suffix:
Enter the value suffix here. The suffix is appended to the value before logging it. %-symbols in
the suffix will be replaced with the register’s name, as described in Register Log Strings on page
24.

 Sample:
Shows a sample of how values will be logged. The value shown here is the same as that dis-
played by string indicators.

String Value Controls

You can specify a control to be executed every time the value of a string register changes.

The Edit Automatic Controls Dialog for String Registers

The list below only shows the fields for value controls. For the other fields, see Register Log
Strings on page 24.

 Value change:
Select the SCL program you want to be executed when the value changes. The program argu-
ments are shown in parentheses after the names of the program, but you only select the program
from the list, not the arguments. To change the arguments, use the “Arguments…” buttons. See
Specifying Arguments for SCL Programs on page 67 for a description of the Edit Program Argu-
ments dialog.

Sources

Every register has a data source. The source specifies where the data for the register is to be
taken from, and how. You select the type of source the register uses in the New Register dialogs.
The settings for the source do not appear in separate dialogs; they are shown at the bottom of the
New Register dialogs, under the heading of “Source”.

Each type of register has a distinct set of source types to choose from. There are four types of
sources that all registers share:

 Serial Data Object Sources

 Summary Sources

 Remote Register Value Sources

 Parameter Sources

 Page 41

U.P.M.A.C.S. Developer’s Manual Database Objects

Bistate registers can have the following additional source types:

 Bit Mask Sources

 Timeout Sources

 Ping Result Sources

 Grand Summary Sources

 Remote Station Alarm Sources

Digital registers can have the following additional source types:

 Thresholds Sources

 Bit Collection Sources

Analog registers can have no additional source types.

String registers can have the following additional source types:

 Filter Sources

Serial Data Object Sources

Serial data object sources take the register’s value from a data object of a serial device.

The value of a bistate data object can be inverted before it is used for the ON/OFF state of a
bistate register. This means that the register’s value will be ON if the object’s value is OFF and
vice versa.

The value of an analog data object can be modified using factor and an offset before it is used as
the value of an analog register. The number logged is calculated from the value of the register as
follows:

register value = object value · factor + offset

To use the object’s value unaltered, use a factor of 1 and an offset of 0.

Use serial data object sources for registers that contain the value of a serial data object.

The Serial Data Object Source Dialog

 Page 42

U.P.M.A.C.S. Developer’s Manual Database Objects

 Port:
Select the serial port that the device is attached to.

 Device:
Select the device.

 Data object:
Select the data object. The data object must have the same type as the register, except for ana-
log registers, which can use digital data objects.

Specify values for all the data object’s parameters on the right, below the “Invert the value” box or
“Factor” and “Offset” fields, if applicable. In the sample dialog, the source uses a data object that
has one digital parameter called “Slot”.

If you do not specify a value for a particular data object parameter (i.e., leave the field blank), a
default value will be used. The default value for bistate parameters is OFF, the default value for
digital and analog parameters is 0, and the default value for string parameters is an empty string.

Show as decimal / Show as hex:
If the data object has any parameters of type digital that don’t have value names, you can select
the way you want to enter the parameter values here. Select “Show as decimal” to enter the val-
ues in decimal, select “Show as hex” to enter the values in hexadecimal.

Show as text / Show as hex: (not shown)
If the data object has any parameters of type string, you can select the way you want to enter the
parameter values here. See Appendix B: Entering Binary Data on page 179 for details on enter-
ing binary data.

 Invert the value:
Check this box if you want a bistate register to contain the inverse of the data object’s value. The
register will be ON if the value is OFF and vice versa. This box is only present for bistate regis-
ters.

 Factor:
Enter the factor with which the data object’s value is to be multiplied before using it for an analog
register. The factor is applied before the offset.

This field is only present for analog registers.

 Offset:
Enter the offset that is to be added to the data object’s value before using it for an analog register.
The offset is applied after the factor.

This field is only present for analog registers.

 Slot:
This is a parameter of the sample object. The parameters for the actual data object you selected
will appear here instead.

Summary Sources

Summary sources take information from a number of other registers. Summary sources provide a
default implementation for each type of register. The default implementation for summary sources
does the following:

Bistate registers:
The register will be in the ON state if any of the summarized registers are in the ON state. The
register will be in the OFF state if all of the summarized registers are in the OFF state.

Digital and analog registers:
The register will contain the number of summarized registers that are in the ON state.

 Page 43

U.P.M.A.C.S. Developer’s Manual Database Objects

String registers:
The register will contain one line of text for each register that is in the ON state. The line will con-
tain the name of the register that is in the ON state.

You can also provide an SCL program to do your own handling. See Programs for Sources,
Checksums, and SABus Response Data in the SCL Language Reference for details.

If all the registers that are being summarized are in the error state, the register will go into its error
state as well. If all register are masked, the register will be auto masked.

Use summary sources for registers whose value is determined from the value of one or more
other registers.

The Summary Source Dialog

 Program:
Select the SCL program that is to do the evaluation. Select <None> to use the default implemen-
tation. The program arguments are shown in parentheses after the name of the program, but you
only select the program from the lists, not the arguments. To change the arguments, use the “Ar-
guments…” button. See Specifying Arguments for SCL Programs on page 67 for a description of
the Edit Program Arguments dialog.

 Update only when an ON/OFF state changes:
Select this option to update the register only if the ON/OFF state of one of the registers changes,
not when the value changes without affecting the ON/OFF state. This option is only available if
you specify a program to evaluate the registers.

 Update only whenever a register value changes:
Select this option to update the register whenever the value of a register changes, even if it does
not affect that register’s ON/OFF state. This option is only available if you specify a program to
evaluate the registers.

 Registers:
Shows a list of all registers that this register summarizes. The register will be updated whenever
one of the registers it depends on changes value.

Use the “Add…” and “Remove” buttons to add and remove registers. The “Add Alarms…” button
is also used to add registers to the list. If you use the “Add Alarms…” button, you will be asked to
select the registers from a list that shows only registers with Alarm or Latching alarm levels.

 Page 44

U.P.M.A.C.S. Developer’s Manual Database Objects

Remote Register Value Sources

Remote register value sources take the register’s value from a register on a remote computer that
is also running U.P.M.A.C.S.. The remote register must be of the same type as the local register,
except for bistate registers, which can get the ON/OFF state of any type of remote register.

Remote register value sources support multiple redundant backup computers. If the main com-
puter fails, or if a connection cannot be established with it, the source will try to connect to all the
backup computers in the order in which you specified them, until a successful connection has
been established. If the source is connected to a backup, and that backup goes off line, it will try
to reconnect to the primary. If the primary is still not available, all backups are tried again, in or-
der.

The source will auto mask the register if the remote register has been masked (automatically,
manually, or internally).

The remote computer must be running U.P.M.A.C.S. v6.0 or later for network sources to work.
You can use remote station alarm sources to get alarms from older stations.

Use remote register value sources to implement network overview screens that show data from
several different stations.

The Remote Register Value Source Dialog

 IP addresses:
Shows the IP addresses for all the computers you specified. The top address in the list is the
primary, all the backups are listed beneath it in order. You can grab and drag the computer
names to change their order. Use the buttons to add, edit, and remove addresses.

 Remote register tag:
Enter the tag of the remote register, as defined in the station file of the remote computer.

Parameter Sources

Parameter sources do not get the register’s value from anywhere. The value of registers with pa-
rameter sources must be set via SCL programs.

Parameter sources support a default value. The register will be set to the default value when the
station is opened. If you do not specify a default value, the register will remain in its error state
until you set its value from within an SCL program.

Parameter sources can also provide the facility to remember the value of the register across
launches of U.P.M.A.C.S.. If you enable this feature, U.P.M.A.C.S. will remember the value the
register had when the station is closed, and set it to the same value when it is reopened. In this
case, the default value (if any) is used only the very first time the station is loaded.

 Page 45

U.P.M.A.C.S. Developer’s Manual Database Objects

Use parameter sources for user settings, or for any other data that you maintain yourself rather
than getting it from the equipment.

The Parameter Source Dialog

 Default value:
Check this box to specify a default value for the register. Specify or select the default value to the
right.

Show as text / Show as hex: (not shown)
For string registers, you can select the way you want to enter the default value here. See
Appendix B: Entering Binary Data on page 179 for details on entering binary data.

 Remember the value across launches of U.P.M.A.C.S.:
Check this box to store the register’s value when the station is closed, and restore it when it is
reopened.

Bit Mask Sources

Bit mask sources use one or more bits from a digital serial data object to determine the ON/OFF
state of a bistate register.

The state is calculated as follows:

 A number is taken from a digital serial data object

 The number is XORed with an XOR mask

 The number is ANDed with an AND mask

The register is set to OFF if the result is 0, and to ON if the result is not zero, or vice versa (de-
pending on the polarity)

The XOR mask inverts all the bits in the number that are 1 in the XOR mask. The AND mask sets
all bits that are 0 in the AND mask to 0. To look at a number of bits do the following:

 Set all the bits that are of interest to you in the AND mask

 Set all the bits that need to be inverted (1s become 0s and 0s become 1s) in the XOR
mask

 Page 46

U.P.M.A.C.S. Developer’s Manual Database Objects

Example:

number (in binary): 0 0 1 0 0 0 1 0 0 0 1 1 0 1 1 0 0 0 0 1 1 0 1 1 1 1 0 1 1 0 0 1

apply XOR mask: 0 1 0 1 0

result: 0 0 1 0 0 0 1 0 0 0 1 1 0 1 1 0 0 0 0 1 1 0 1 1 1 1 0 1 0 0 1 1

apply AND mask: 0 1 1 1 1

result: 0 1 1

The result is 00000011 00000000 00000000 00000000= 50331648.

Use bit mask sources for bistate registers whose state depends on the value of one or more bits
in a digital data object.

The Bit Mask Source Dialog

 Port:
Select the serial port that the device is attached to.

 Device:
Select the device.

 Data object:
Select the data object. Specify values for all the data object’s parameters on the right. In the
sample dialog, the source uses a data object that has one digital parameter called “Fault byte
number”.

If you do not specify a value for a particular data object parameter (i.e., leave the field blank), a
default value will be used. The default value for bistate parameters is OFF, the default value for
digital and analog parameters is 0, and the default value for string parameters is an empty string.

Show as decimal / Show as hex:
If the data object has any parameters of type digital that don’t have value names, you can select
the way you want to enter the parameter values here. Select “Show as decimal” to enter the val-
ues in decimal, select “Show as hex” to enter the values in hexadecimal.

Show as text / Show as hex: (not shown)
If the data object has any parameters of type string, you can select the way you want to enter the
parameter values here. See Appendix B: Entering Binary Data on page 179 for details on enter-
ing binary data.

 Page 47

U.P.M.A.C.S. Developer’s Manual Database Objects

 XOR mask:
Select the bits you want to invert. The least significant bit and byte are shown on the right. Black
bits will be inverted; white bits will not be inverted. Click on a bit to toggle it, click on the byte
number above the bits to set or clear all the bits in that byte.

 AND mask:
Select the bits you want to use. The least significant bit and byte are shown on the right. Black
bits will be used; white bits will be masked out to 0s. Click on a bit to toggle it, click on the byte
number above the bits to set or clear all the bits in that byte.

 Polarity:
Select the polarity of the register. An alarm can either be triggered by any result greater than 0
(normal polarity), or by the result 0 only (inverted polarity).

Timeout Sources

Registers with timeout sources are set to the ON state if a serial command sent to a device times
out. If the device is communicating normally, the register is set to OFF.

Use timeout sources to implement communication state indicators and alarms.

The Timeout Source Dialog

 Port:
Select the serial port that the device is attached to.

 Device:
Select the device. If you select <all>, the indicator will be set to ON if any of the devices attached
to the port time out.

Ping Result Sources

Ping result sources use the result of a ping network query. The register will be OFF if the ping
was successful, or ON if the ping timed out.

Usually, the register will go into its error state if a network error other than a ping timeout occurs
(no network present, unreachable host, etc.), but the source can be configured to set the register
to the ON state on any kind of network error.

Use this source type to determine whether a network device, like a computer, router, print server,
etc. is functioning properly.

 Page 48

U.P.M.A.C.S. Developer’s Manual Database Objects

The Ping Result Source Dialog

 IP address:
Enter the IP address of the network device you would like to ping.

 Treat network errors as alarms:
If you leave this check box blank, the register will go into its error state if a network error other
than a ping timeout occurs. If you check this box, the register will go into its ON state. A network
error other than a timeout usually indicates that something is wrong with the networking on the
computer that U.P.M.A.C.S. is running on, rather than with the network device you are trying to
ping.

 Interval:
Enter the interval between pings. If you enter 30s, the device will be pinged every 30s. The inter-
val must be at least 0.5s longer than the timeout multiplied by the retries. This is necessary so
that the total amount of time needed to determine that a device is not working is shorter than the
interval.

 Timeout:
Enter the ping timeout in s. This is the time that the network device is allowed to take to respond.
If the register tends to go into its ON state even though the network device is working correctly,
increase the timeout or the retries (see below).

 Retries:
Enter the number of times U.P.M.A.C.S. tries to ping the device. If the register tends to go into its
ON state even though the network device is working correctly, increase the retries or the timeout
(see above).

Grand Summary Sources

Grand summary sources summarize the alarm state of all alarms in the station. The register will
be ON if any other register with alarm level Alarm or Latching alarm is ON.

Use grand summary sources for global summary alarms, for example to represent the local sta-
tion on a network map.

Grand summary sources cannot be edited, as they always behave the same. There is no Grand
Summary Source dialog.

Remote Station Alarm Sources

Remote station alarm sources use the ON/OFF state from a register on a remote station that
U.P.M.A.C.S. is connected to. If you do not specify a register, the remote station alarm source will
act like a grand summary source for a remote station. Remote station alarm sources are provided
to get alarm information from remote stations running versions of U.P.M.A.C.S. prior to v6.0. For
stations that run U.P.M.A.C.S. v6.0 or newer, use remote register value sources.

If U.P.M.A.C.S. is not connected to the remote station, the register will be auto-masked.

 Page 49

U.P.M.A.C.S. Developer’s Manual Database Objects

Use remote station alarm sources to implement network overview screens that show data from
stations that run versions of U.P.M.A.C.S. prior to v6.0.

The Remote Station Alarm Source Dialog

 Station name:
Enter the name that the station will be connected as. This name must be the same as the name
entered in the “Connect as:” field of the Connect To dialog in the U.P.M.A.C.S. Operate System.

 Register tag:
Enter the tag of the register whose ON/OFF state you wish to reflect. Leave this field blank to
show a grand summary alarm for all registers in the remote station. If you leave this field blank,
the register will be ON if any register on the specified station with alarm level Alarm or Latching
alarm is ON.

Thresholds Sources

Thresholds sources set the value of a digital register according to the value of a digital or analog
serial data object and a set of thresholds. You can specify a value that the register should take if
the object’s value is above a certain threshold. You must also specify a bottom value for the reg-
ister. The bottom value is the value the register should have if the number lies below all the
thresholds.

Example:

The sample dialog shows the following thresholds and values:

Bottom value: 0

Threshold at 85: 1

Threshold at 170: 2

The register will have value 0 for numbers less than 85, value 1 for numbers of
at least 85 but less than 170, and value 2 for numbers of at least 170.

Use thresholds sources for registers whose value reflects a set of states represented as different
analog levels on an input of a data acquisition unit.

 Page 50

U.P.M.A.C.S. Developer’s Manual Database Objects

The Thresholds Source Dialog

 Port:
Select the serial port that the device is attached to.

 Device:
Select the device.

 Data object:
Select the data object. Specify values for all the data object’s parameters on the right, below the
“Value” field. In the sample dialog, the source uses a data object that has one digital parameter
called “Number”.

If you do not specify a value for a particular data object parameter (i.e., leave the field blank), a
default value will be used. The default value for bistate parameters is OFF, the default value for
digital and analog parameters is 0, and the default value for string parameters is an empty string.

Show as decimal / Show as hex:
If the data object has any parameters of type digital that don’t have value names, you can select
the way you want to enter the parameter values here. Select “Show as decimal” to enter the val-
ues in decimal, select “Show as hex” to enter the values in hexadecimal.

Show as text / Show as hex: (not shown)
If the data object has any parameters of type string, you can select the way you want to enter the
parameter values here. See Appendix B: Entering Binary Data on page 179 for details on enter-
ing binary data.

 Value:
For analog data objects, select which value to use.

Current:
Select this option for data objects with a size of one value, or to use the value with the greatest
index of a data object with a size of more than one value. This corresponds to the last value
added by an SCL program.

Highest:
Select this option to use the highest of all the data object’s values.

 Page 51

U.P.M.A.C.S. Developer’s Manual Database Objects

Lowest:
Select this option to use the lowest of all the data object’s values.

This option is not available if you selected a digital data object rather than an analog one.

 Bottom value:
Enter the value that the register should take if the number lies below any of the thresholds.

 Thresholds:
Lists all the thresholds and their corresponding values. Use the buttons to add, remove, or modify
thresholds and their values.

Bit Collection Sources

Bit collection sources use bits from one or more digital serial data objects to determine the value
of a digital register. The bits are taken from one or more bit sections, and the values of those sec-
tions are ORed together. You can then invert bits in the result using an XOR mask.

The value of each section is determined as follows:

 A number is taken from a digital serial data object

 The number is bit rotated to adjust the position of the relevant bits

 Any bits that need to be inverted are inverted using an XOR mask

 The relevant bits are masked out using an AND mask

All the sections are then ORed together, and the XOR mask of the bit collection source is applied.

Bit rotation explained:

A bit rotation left moves all bits in a value left. The topmost bits are moved to the
bottom, into the spot left vacant when the bottom bits moved left.

A bit rotation right moves all bits in a value right. The bottom most bits are moved to
the top, into the spot left vacant when the top bits moved right.

A bit rotation left by 3 looks like this:

0 10

0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 0 1 1 1 1 1 0 0 0 1 0 10 0 1

0 1 1 0 1 0 1 1 0 10 0 1 0 0 1 1 10 0 1 0 0 1 0 11 1 0 0 0 1

You can also specify a value map for the source. Sometimes, it is not possible to manipulate the
bits so that you will get the desired values for the desired states. Other times, different results
correspond to the same value. A value map will allow you to substitute other values for values
calculated by the source. Normally, the result of the calculation described above is used directly
as the value of the register. If the result is 2, the value of the register will also be 2. If, however,
you would prefer the value of the register to be 4 if the result is 2, then you could specify a value
map that maps a source value of 2 to a register value of 4. You can specify register values to be
substituted for any number of source values.

Use bit collection sources for digital registers whose value depends on a number of bits from a
number of digital data objects.

Examples

There are two basic ways of using bit collection sources.

 Page 52

U.P.M.A.C.S. Developer’s Manual Database Objects

 Using a number of adjacent bits from a single data object:
Sometimes, the state of a piece of equipment is represented by a number of bits in a status byte.
Bits 3 and 4 in a byte might represent a local/computer/remote front panel mode, for example.
The two bits might be 00, 01, and 10, depending on the mode. To turn this into a number be-
tween 0 and 2, construct one bit section as follows:

number (in binary): 1 1 0 0 1 0 0 1

rotate right by 3 bits: 1
0
0

1
1
0

1
1
1

0
1
1

0
0
1

1
0
0

0
1
0

0
0
1

apply XOR mask: 0 0 0 0 0 0 0 0

result: 0 0 1 1 1 0 0 1

apply AND mask: 0 0 0 0 0 0 1 1

result: 0 0 0 0 0 0 0 1

The result of this section is then treated with the global XOR:

result of the section: 0 0 0 0 0 0 0 1

apply global XOR: 0 0 0 0 0 0 0 0

result: 0 0 0 0 0 0 0 1

The value of the register will thus depend on the value of the two bits alone.

 Using bits from different data objects, or using non-adjacent bits:
Sometimes, the bits that represent the value you desire are not right next to each other in the
same data object. You might want to turn a standby / transmit state and a warming / ready state
of an HPA into a single object, but the states are represented by different bits in different data
objects. Let’s assume the high bit is bit 0 in one data objects, and the low bit is bit 2 in another
data object. You will need two bit sections, as follows:

The first section turns bit 0 of one data object into bit 1 of the result:

number (in binary): 0 1 1 0 1 0 1 1

rotate left by 1 bit: 1 1 0 1 0 1 1 0

apply XOR mask: 0 0 0 0 0 0 0 0

result: 1 1 0 1 0 1 1 0

apply AND mask: 0 0 0 0 0 0 1 0

result: 0 0 0 0 0 0 1 0

The second section turns bit 2 of the other data object into bit 0 of the result:

number (in binary): 1 1 0 1 1 0 0 1

rotate right by 2 bits: 1
0

1
1

1
1

0
1

1
0

1
1

0
1

0
0

apply XOR mask: 0 0 0 0 0 0 0 0

result: 0 1 1 1 0 1 1 0

apply AND mask: 0 0 0 0 0 0 0 1

result: 0 0 0 0 0 0 0 0

 Page 53

U.P.M.A.C.S. Developer’s Manual Database Objects

The result of the sections are ORed together and then treated with the global XOR:

result section 1: 0 0 0 0 0 0 1 0

result section 2: 0 0 0 0 0 0 0 0

ORed together: 0 0 0 0 0 0 1 0

apply global XOR: 0 0 0 0 0 0 0 0

result: 0 0 0 0 0 0 1 0

The Bit Collection Source Dialog

 Sections:
Lists the data objects, rotate values, and XOR and AND masks of all the sections. Use the but-
tons to create, delete, or edit sections. Use the “Duplicate…” button to duplicate the selected sec-
tion.

See Bit Sections on page 54 for a description of the New Bit Section dialog.

 XOR mask:
Select the bits you want to invert. The least significant bit and byte are shown on the right. Black
bits will be inverted; white bits will not be inverted. Click on a bit to toggle it, click on the byte
number above the bits to set or clear all the bits in that byte.

 The “Value Map” button:
Click this button to edit the value map. The value map allows you to substitute different values for
the values calculated by the source.

Bit Sections

Bit sections are used in bit collection sources. A bit collection source uses the results of one or
more bit sections, ORed together.

The result of a bit section is calculated as follows:

 A number is taken from a digital serial data object

 The number is bit rotated to adjust the position of the relevant bits

 Any bits that need to be inverted are inverted using an XOR mask

 Page 54

U.P.M.A.C.S. Developer’s Manual Database Objects

 The relevant bits are masked out using an AND mask

The XOR mask inverts all the bits in the number that are 1 in the XOR mask. The AND mask sets
all bits that are 0 in the AND mask to 0. To look at a number of bits do the following:

 Bit rotate the number left or right to move the bits to the desired location within the result

 Set all the bits that are of interested to you in the AND mask

 Set all the bits that need to be inverted (1s become 0s and 0s become 1s) in the XOR
mask

Example:

number (in binary): 1 1 0 1 1 1 1 0 1 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 1 0 1 1 0 0 0 0

rotate left by 5 bits: 1
0
1
1
1

0
1
1
1
1

1
1
1
1
0

1
1
1
0
1

1
1
0
1
1

1
0
1
1
0

0
1
1
0
0

1
1
0
0
1

1
0
0
1
0

0
0
1
0
0

0
1
0
0
1

1
0
0
1
0

0
0
1
0
0

0
1
0
0
0

1
0
0
0
1

0
0
0
1
0

0
0
1
0
0

0
1
0
0
0

1
0
0
0
1

0
0
0
1
1

0
0
1
1
0

0
1
1
0
1

1
1
0
1
1

1
0
1
1
0

0
1
1
0
0

1
1
0
0
0

1
0
0
0
0

0
0
0
0
1

0
0
0
1
1

0
0
1
1
0

0
1
1
0
1

1
1
0
1
1

apply XOR mask: 0 0 0 0 1 0 1 0

result: 1 1 0 1 0 0 1 1 0 0 1 0 0 0 1 0 0 0 1 1 0 1 1 0 0 0 0 1 1 0 1 1

apply AND mask: 0 0 0 0 1 1 1 1 0

result: 0 0 0 0 0 0 1 1 0

The result is 00000011 00000000 00000000 00000000= 50331648.

The New Bit Section Dialog

 Page 55

U.P.M.A.C.S. Developer’s Manual Database Objects

 Port:
Select the serial port that the device is attached to.

 Device:
Select the device.

 Data object:
Select the data object. Specify values for all the data object’s parameters immediately below. In
the sample dialog, the bit section uses a data object that has one digital parameter called “Bank”.

If you do not specify a value for a particular data object parameter (i.e., leave the field blank), a
default value will be used. The default value for bistate parameters is OFF, the default value for
digital and analog parameters is 0, and the default value for string parameters is an empty string.

Show as decimal / Show as hex (not shown):
If the data object has any parameters of type digital that don’t have value names, you can select
the way you want to enter the parameter values here. Select “Show as decimal” to enter the val-
ues in decimal, select “Show as hex” to enter the values in hexadecimal.

Show as text / Show as hex (not shown):
If the data object has any parameters of type string, you can select the way you want to enter the
parameter values here. See Appendix B: Entering Binary Data on page 179 for details on enter-
ing binary data.

 Rotate bits:

Specify the number of bits to rotate to the left or right. Press the arrows on the top right until
the bits align the way you would like them.

 XOR mask:
Select the bits you want to invert. The least significant bit and byte are shown on the right. Black
bits will be inverted; white bits will not be inverted. Click on a bit to toggle it, click on the byte
number above the bits to set or clear all the bits in that byte. The masks are applied after the bit
rotation.

 AND mask:
Select the bits you want to use. The least significant bit and byte are shown on the right. Black
bits will be used; white bits will be masked out to 0s. Click on a bit to toggle it, click on the byte
number above the bits to set or clear all the bits in that byte. The masks are applied after the bit
rotation.

Filter Sources

Filter sources use the value of a string serial data object as the value of the string register, if and
only if it matches one of a number of patterns you specify. If the data object’s value does not
match any of the patterns, the register’s value remains unchanged.

Filter sources are used to cache data that matches a certain pattern. Some equipment, for exam-
ple, logs messages about events in a message queue and allows you to retrieve the messages in
order. In such a case, a filter source lets you remember the last message that referred to a cer-
tain piece of information, like for example a certain alarm. If the message in the buffer is overwrit-
ten with something that does not refer to that particular alarm, the filter source will ignore the new
message, and the register will retain the last relevant one. You can thus attach a number of filter
sources to the message buffer; each filtering out messages pertaining to a different alarm. The
last message about each alarm will then always be available, even if it has been overwritten in
the equipment’s message buffer. You can then display the message directly, trigger an alarm
based on the message using an alarm trigger, or use a summary source to process the informa-
tion further.

 Page 56

U.P.M.A.C.S. Developer’s Manual Database Objects

Example:

An LNA controller has only a summary alarm bit, but writes a message to a queue every time an alarm
occurs or clears. The message contains the time and date of the state change, the alarm name, and the
word “set” or “clear” to describe the new state. In this case, you could create a register for each type of
alarm. Each register will have a filter source that filters out only messages containing the alarm name of the
alarm the register represents, and an alarm trigger that triggers an alarm if the value contains the word
“set” .

Each alarm will then trigger when a message arrives saying that the alarm has set. All other messages are
then ignored, until a message arrives that says the alarm has cleared. The register’s value will then be
updated, and the alarm will clear, because the value no longer contains the word “set” .

You could also attach another register to each alarm via a summary source, displaying the time the alarm
occurred or cleared. Since the register’s value is only updated when a message pertaining to its alarm
arrives, the date and time of the message stored in the register value will always be the date and time of the
last change.

The Filter Source Dialog

 Port:
Select the serial port that the device is attached to.

 Device:
Select the device.

 Data object:
Select the data object. Specify values for all the data object’s parameters immediately below. In
the sample dialog, the source uses a data object that has one digital parameter called “Connec-
tor”.

If you do not specify a value for a particular data object parameter (i.e., leave the field blank), a
default value will be used. The default value for bistate parameters is OFF, the default value for
digital and analog parameters is 0, and the default value for string parameters is an empty string.

Show as decimal / Show as hex (not shown):
If the data object has any parameters of type digital that don’t have value names, you can select
the way you want to enter the parameter values here. Select “Show as decimal” to enter the val-
ues in decimal, select “Show as hex” to enter the values in hexadecimal.

 Page 57

U.P.M.A.C.S. Developer’s Manual Database Objects

Show as text / Show as hex (not shown):
If the data object has any parameters of type string, you can select the way you want to enter the
parameter values here. See Appendix B: Entering Binary Data on page 179 for details on enter-
ing binary data.

 Allowed strings:
Lists regular expressions describing patterns that the data must match. The value of the register
will only be changed if the data matches one of the allowed strings.

See Appendix A: Regular Expressions on page 171 for details.

Use the buttons to create, delete, and edit the expressions.

SCL Programs

SCL programs are used as manual and automatic controls, in SABus commands, and in SABus
processor response data. For a description of the SCL language, see the SCL Language Refer-
ence.

In addition, SCL programs can be configured to run automatically when a station is loaded, or at
regular intervals. You can also specify special times and dates at which a program will be exe-
cuted.

Once you have created an SCL program, an SCL Program Editor window will appear so that you
can let you edit the code.

If you select a program in the Programs window, and press the “Edit…” button, the editor window
will appear rather than the Edit Program dialog. To change the properties of a program, select it
and press the “Properties…” button. You can also select “Properties…” from the “Edit” menu
when viewing the program’s code.

The New Program Dialog

 Page 58

U.P.M.A.C.S. Developer’s Manual Database Objects

 Tag:
Enter the tag by which the program is identified. Each program must have a unique tag.

 Name:
Enter the name of the program. Leave this field blank if you want to use the tag as name.

 Allow execution without signing on:
If you check this box, this SCL program can be executed even by a user that does not have Con-
trol Privileges, when no user is signed on, or if someone is signed on from a different location.
This means that control buttons that use this program will always be visible, and SABus com-
mands that use this program will never be rejected with the ‘USR’ error message.

Please remember that the operator will usually assume that he has exclusive control of the sta-
tion when he is signed on. You should only check this box for programs that do nothing but pro-
vide information to the operator, never for programs that change settings or control equipment.
Otherwise, it is possible for several users at several different locations to attempt to perform the
same action at the same time, usually with unexpected or confusing results.

 Abort execution after … instructions:
Check this box if you want to guard the program against endless loops. The program will be
aborted after the specified number of SCL commands or assignments have been executed. Pro-
grams used in processor and summary sources have a built-in instruction limit of 500 instructions.
Check this box to specify a greater or smaller limit.

 Data decoders:
Shows a list of all data decoders defined for this program. use the buttons, to add, delete, and
edit decoders.

See Error! Reference source not found. on page Error! Bookmark not defined. for details.

 Data encoders:
Shows a list of all data encoders defined for this program. use the buttons, to add, delete, and
edit encoders.

See Error! Reference source not found. on page Error! Bookmark not defined. for details.

 Execute at startup:
Check this box to execute the program as soon as the station is loaded.

 Execute every … s:
Check this box to execute the program at regular intervals. Specify the interval in seconds. You
can enter fractions of a second. If the program takes longer to execute than the interval specified,
a second instance of the program is started.

 Scheduled execution times:
Shows a list of times and dates at which the program will be executed automatically. Use the but-
tons to create, delete, or edit the scheduled times.

See SCL Program Scheduling below for a description of the Schedule Execution Time dialog.

SCL Program Scheduling

You can specify special times and dates at which to execute an SCL program automatically. You
can, for example, execute a program automatically:

 5 minutes after the hour, every hour

 at 5:03, 7:03, and 14:03 every day

 at 9:00 every Monday and Thursday

 at 17:00 every 1st and 15th of the month

 Page 59

U.P.M.A.C.S. Developer’s Manual Database Objects

 midnight on Halloween

Press the “New…” or “Edit” buttons beneath the list of Scheduled execution times in the New Pro-
gram dialog to pop up the Scheduled Execution Time dialog.

The Scheduled Execution Time Dialog

 Execute the program … minutes:
Enter the minutes after the hour that you want the program executed. To execute the program at
5:03, enter 3 here. You can specify several values, separated by commas. To execute the pro-
gram at 5:00 and 5:30, enter “0, 30”.

 After every hour:
Select this radio button if you want to execute the program the specified number of minutes after
every hour.

 After the following hours (0-23):
Select this radio button if you want to execute the program the specified number of minutes after
specific hours only. Enter the hours, in 24-hour time, after which the program is to be executed.
To execute the program at 5:03, enter 5 here. You can specify several values, separated by
commas. To execute the program at 9:30 and 14:30, enter “9, 14”.

 Regardless of the day of the month:
Select this radio button if you want to execute the program regardless of the day of the month.
You should select the button if you want to execute the program every day, or if you want to exe-
cute it on specific days of the week.

 On the following days of the month:
Select this radio button if you want to execute the program on specific days of the month only.
Enter the days of the month on which you want the program to be executed. You can enter more
than one value, separated by commas. To execute the program on the 1st and 15th of every
month, enter “1, 15”.

If you select this option and the “On these days of the week” option (see below), the program will
be executed only on days that are both the correct day of the month and the correct day of the
week. E.g., selecting the 13th of the month and Friday will execute the program only on Friday the
13th.

 Regardless of the day of the week:
Select this radio button if you want to execute the program regardless of the day of the week. You
should select the button if you want to execute the program every day, or if you want to execute it
on specific days of the month.

 Page 60

U.P.M.A.C.S. Developer’s Manual Database Objects

 On these days of the week:
Select this radio button if you want to execute the program on specific days of the week only. Se-
lect the days of the week on which you want the program to be executed by checking the appro-
priate check boxes. You can check any number of boxes.

If you select this option and the “On the following days of the month” option (see above), the pro-
gram will be executed only on days that are both the correct day of the month and the correct day
of the week. E.g., selecting the 13th of the month and Friday will execute the program only on Fri-
day the 13th.

The SCL Program Editor

SCL Program Editor windows are used to edit the code of an SCL program. The window will auto-
matically appear when you create a program. To open an SCL editor window for a program once
you have closed it, select the program in the Programs window, and press the “Edit…” button, or
double-click on the program’s name.

Syntax Colouring

The SCL Program Editor uses different colours to display different kinds of SCL language com-
ponents. See SCL Syntax Colouring on page 66 for details.

Insert/Overwrite Mode

Usually, text you type will be inserted into the code at the cursor position without removing any
other text. You can switch the editor to Overwrite mode, however, by pressing the Insert key. If
you then type something, the text will overwrite the existing code character by character. Press
the Insert key again to return to Insert mode. As long as the editor is in overwrite mode, the three
letters “OVR” appear in the status bar, near the lower right hand corner of the Development Sys-
tem Window.

The Selection Margin

The selection margin is a grey stripe along the left side of the editor window. Click in the selection
margin to select an entire line of SCL code.

Drag-And-Drop Editing

The SCL Program Editor supports drag-and-drop editing. To move a section of text from one
place in the code to another, select it, and then click on it and hold the mouse button down. Drag
the mouse until the dotted insertion cursor is at the desired location, and let go of the mouse but-
ton. The selected text will be moved to the new location.

To move a copy of the text, without removing the original, hold down the Ctrl key when you re-
lease the mouse button.

Paste Special

Many SCL commands require you to enter the tag of a database object. The SCL Program Editor
allows you to paste the tag of certain objects, enclosed in double quotes (""), using the Paste
Special feature.

To paste a database object tag, select one of the options under “Paste Special” in the “Edit”
menu:

 Page 61

U.P.M.A.C.S. Developer’s Manual Database Objects

 Paste Port Tag:

The Paste Serial Port Tag dialog.

Select this option to paste the tag of a serial port, enclosed in double quotes ("").

 Paste Register Tag:

The Paste Register Tag dialog.

Select this option to paste the tag of a register, enclosed in double quotes ("").

Select the register whose tag you want to paste from the list and press OK, or double-click on it.
You can select which types of registers to display using the “Show” check boxes at the bottom of
the dialog. The registers are marked with the same icons as in the register window to show their
type.

 Page 62

U.P.M.A.C.S. Developer’s Manual Database Objects

 Paste Program Tag:

The Paste Program Tag dialog.

Select this option to paste the tag of another SCL program, enclosed in double quotes ("").

 Paste Device Tag:

The Paste Device Tag dialog.

Select this option to paste the tag of a serial device, enclosed in double quotes ("").

Select the port that the device is attached to in the “Port” field, and highlight the device whose tag
you want to paste. If you check the “Paste port tag as well” check box, the port tag will be pasted
before the driver tag, separated by a comma.

 Page 63

U.P.M.A.C.S. Developer’s Manual Database Objects

 Paste Command Tag:

The Paste Command Tag dialog.

Select this option to paste the tag of a serial device command enclosed in double quotes ("").

Select the port that the command’s device is attached to in the “Port” field, select the device in the
“Device” field, and highlight the command whose tag you want to paste. If you check the “Paste
device tag as well” check box, the device tag will be pasted before the command tag, separated
by a comma. If you check the “Paste port tag as well” check box, the port tag will be pasted be-
fore the device tag, also separated by a comma.

 Paste Data Object Tag:

The Paste Data Object Tag dialog.

Select this option to paste the tag of a serial data object enclosed in double quotes ("").

Select the port that the data object’s device is attached to in the “Port” field, select the device in
the “Device” field, and highlight the data object whose tag you want to paste. If you check the
“Paste device tag as well” check box, the device tag will be pasted before the data object tag,
separated by a comma. If you check the “Paste port tag as well” check box, the port tag will be
pasted before the device tag, also separated by a comma.

 Page 64

U.P.M.A.C.S. Developer’s Manual Database Objects

 Paste Driver Program Tag:

The Paste Driver Program Tag dialog.

Select this option to paste the tag of a device driver program enclosed in double quotes ("").

Select the port that the program’s device is attached to in the “Port” field, select the device in the
“Device” field, and highlight the program whose tag you want to paste. If you check the “Paste
device tag as well” check box, the device tag will be pasted before the program tag, separated by
a comma. If you check the “Paste port tag as well” check box, the port tag will be pasted before
the device tag, also separated by a comma.

Undo/Redo

The SCL Program Editor supports multiple Undos and Redos. Select “Undo” from the “Edit” menu
to undo something you did, select “Redo” to redo the last thing you undid.

Line Numbers

When the cursor is in an SCL Program Editor window, the number of the line the cursor is cur-
rently in appears in the status bar. The status bar is located at the bottom of the U.P.M.A.C.S.
Development System window.

If you want to go to a specific line, select “Go To Line…” from the “Edit” menu, and enter the de-
sired line number in the Go To Line dialog.

The line numbers in the status bar and the Go To Line editor refer to the lines of text in the SCL
program editor, not the SCL line numbers used for jumps and subroutines.

Bookmarks

You can mark certain lines in an SCL Program Editor window with a bookmark. To set or remove
a bookmark, move the cursor to the line you want to bookmark, and select “Toggle Bookmark”
from the “Edit” menu. Once you bookmark a line, a red square appears next to it in the window.
To remove all bookmarks, select “Clear All Bookmarks” from the “Edit” menu.

To move the cursor to a bookmark, use the “Previous Bookmark” and “Next Bookmark” items in
the “Edit” menu.

 Page 65

U.P.M.A.C.S. Developer’s Manual Database Objects

SCL Syntax Colouring

The SCL Program Editor uses different colours to display different kinds of SCL language com-
ponents. To change the colours used for the different language components, select “SCL Syntax
Colours…” from the “Edit” menu.

The SCL Syntax Colours Dialog

 Item:
Select the item for which you want to change the colours.

 Select To change
Background colour Background colour of the SCL editor windows

Plain text Colours for normal text

Line numbers Colours for line numbers

Remarks Colours for remarks (comments)

Operators Colours for operators such as +, -, *, AND, OR, etc.

Numbers Colours for numbers

String literals Colours for strings in double quotes ("")

Constants Colours for names of constants like PI and RET$

Commands Colours for names of commands

Functions Colours for names of functions

Numerical variables Colours for names of numerical variables

String variables Colours for names of string variables

Boolean variables Colours for names of Boolean variables

Reserved variables Colours for names of reserved variables like TIME$ and USR$

Special variables Colours for the special variables RESULT, RESULT$, RESULT%,
GLRESULT, and MASKRESULT%

Database objects Colours for tags of database object in double quotes ("")

Illegal text Colours for illegal characters and misplaced text

 Foreground:
Select the colour of the text for the current item.

 Background:
Select the background colour for the current item.

 Page 66

U.P.M.A.C.S. Developer’s Manual Database Objects

 Text style:
Select the text style for the current item.

Specifying Arguments for SCL Programs

Whenever an SCL program is used, you can specify arguments for it. The arguments simply con-
sist of variables that are initialized to values other than their default value. See Program Argu-
ments in the SCL Language Reference for details.

The Edit Program Arguments Dialog

 Arguments:
Shows a list of the arguments currently defined.

 The “Edit…” button:
Press this button to change the name or value of the selected argument.

 The “Delete” button:
Press this button to delete the selected argument.

 The “New…” button:
Press this button to add a new argument.

SCL Data Decoders and Encoders

You can define one or more data decoders and encoders for an SCL program. These decoders
and encoders are used to construct or interpret SCL strings using special SCL commands and
functions. See Decoding and Encoding Data in the SCL Language Reference for details.

A decoder tells the SCL program how to parse a value from a data string. An encoder tells the
program how to write a value to a data string. Each decoder and each encoder has a decoder or
encoder number, which is used to tell the SCL function or command which decoder or encoder to
use.

There are five types of decoders:

 Numerical decoders (floating point number)

 Numerical decoders (unsigned integer)

 Numerical decoders (set of strings)

 String decoders

 Boolean decoders

 Page 67

U.P.M.A.C.S. Developer’s Manual Database Objects

There are also the equivalent five types of encoders:

 Numerical encoders (floating point number)

 Numerical encoders (unsigned integer)

 Numerical encoders (set of strings)

 String encoders

 Boolean encoders

Boolean decoders and encoders are used for values that can be expressed as either true or false
(or on and off), similar to the values of bistate registers.

Numerical Decoders (Floating-Point Number)

Floating-point number decoders get a numerical value with virtually unlimited range from a data
string. Floating-point number decoders support decimal fractions as well as exponential (scien-
tific) notation.

The New Numerical Decoder (Floating-Point Number) Dialog

 Decoder number:
Enter the decoder number by which the decoder is identified. Each decoder in an SCL program
must have a unique decoder number.

 Encoding:
Select the encoding method that the number is encoded in. U.P.M.A.C.S. supports the following
encoding methods:

Byte:
A single byte (character) in the command string is used to represent the number as an 8-bit
value. If you select signed byte encoding, the most significant bit of the byte will be interpreted as
the sign in the standard way ($FF is -1, $FE is -2, etc.). The byte encoding method requires a
fixed width of 1.

 Page 68

U.P.M.A.C.S. Developer’s Manual Database Objects

Multibyte:
Two or more bytes (characters) in the command string are used to represent the number as a 16,
24, or 32-bit value. You can choose between lo-hi and hi-lo byte ordering. If you select lo-hi byte
ordering, the least significant byte (the lower 8 bits) must appear in the response first; if you selct
hi-lo byte ordering, the most significant byte (the upper 8 bits) must appear first. If you select
signed multibyte encoding, the most significant bit of the most significant byte will be interpreted
as the sign in the standard way (for 16-bit values $FFFF is -1,$FFFE is -2, etc.). The multibyte
encoding method requires a fixed width of 2, 3, or 4.

BCD:
The number is encoded using Binary Coded Decimal encoding. In BCD encoding, each nibble
(hex digit) in a byte represents one decimal digit. The number 20,841,057 would be encoded as
the byte (character) values hex 20 (32), hex 84 (132), hex 10 (16), and hex 57 (87). The BCD
encoding method requires a fixed width.

Decimal, Hexadecimal, Binary, Octal:
The number is written out as a decimal, hexadecimal, binary, or octal number using ASCII char-
acters. Hexadecimal encoding recognizes both capital and small letters (“A” to “F” and “a” to “f”)
as hex digits.

Do not confuse the byte/multibyte and binary encoding methods. The binary encoding expects
the number to be written out as a series of ASCII characters 1 (hex 31) and 0 (hex 30), not using
the individual bits of each byte.

 Allow positive (+) sign:
Check this box to allow a plus sign to denote positive numbers. The plus sign does not actually
have to be the “+” character. You can specify any character you want.

This setting only applies to the decimal encoding.

 Allow negative (-) sign:
Check this box to allow a minus sign to denote negative numbers. If you leave this check box
blank, all numbers will be positive. The minus sign does not actually have to be the “-” character.
You can specify any character you want.

This setting only applies to the decimal encoding.

 Allow thousands separator:
Check this check box if you want digits to be separated into groups of three using a thousands
separators (usually a comma). If you check this box, you must also specify the actual character
used to group digits.

This setting only applies to the decimal encoding.

 Allow decimal marker:
Check this box to allow a decimal marker and decimals. If you leave this check box blank, all
numbers will be whole numbers. If you leave this box checked, you can specify the character
used as a decimal marker.

This setting only applies to the decimal encoding.

 Allow exponential notation:
Check this box to allow exponential (scientific) notation with the decimal encoding method.

 Prefix for positive / negative exponent:
Enter the exponent markers for positive and negative exponents here. The exponent markers
must include the sign of the exponent. Usually, the positive exponent marker is “E+” or “e+”, and
the negative marker is “E-” or “e-”. If the plus sign is omitted for positive exponents, specify “E” or
“e” for the positive exponent prefix. The exponent prefixes can be any arbitrary data. See
Appendix B: Entering Binary Data on page 179 for details on entering binary data.

 Page 69

U.P.M.A.C.S. Developer’s Manual Database Objects

Show as text / Show as hex:
Select the way you want to enter the exponent prefixes. See Appendix B: Entering Binary Data on
page 179 for details.

 Skip leading characters:
Check this box to skip any characters that appear before the number in the data string. This set-
ting only applies to the decimal, hexadecimal, binary, and octal encodings.

Only spaces / All non-numerical / Only these:
Specify the characters that are allowed to appear before the number.

 Use fixed width:
Check this check box to require the number to be a fixed number of bytes (characters) long.
Specify the number of bytes in the edit box.

You must check this box for the byte, multibyte, and BCD encoding methods.

Allow trailing characters:
Check this box to allow characters that are not part of the number to appear after it in the data
string. This only applies to characters within the fixed width. All characters are always allowed to
appear beyond the fixed width. Specify the characters that are allowed to appear after the num-
ber using the radio buttons.

This setting only applies to the decimal, hexadecimal, binary, and octal encodings.

 Implied decimals:
Specify the number of implied decimals here. Implied decimals are a way of encoding fractions
without using a decimal point by multiplying it with a power of ten before encoding it. A number
that is encoded using 3 implied decimals, for example, will be multiplied by 1000 before it is en-
coded. This will move the three decimals from the right to the left of the decimal point, and the
decimal point will no longer be needed. 21.304, for example, will simply be encoded as 21304.

Please note that the implied decimals for the hexadecimal, octal, and binary encoding methods
are decimal fractions, not hexadecimal, octal or binary fractions. In hexadecimal encoding with
three implied decimals, 43.249 (which is~2B.3FC in hex) will appear as A8F1 (which is 43249 in
decimal) rather than 2B3FC. In other words, the number is always multiplied by powers of 10,
even if the encoding method uses base 16, 2 , or 8.

Numerical Decoders (Unsigned Integer)

Unsigned integer decoders get an integer value between 0 and 4,294,967,295 (hex FFFFFFFF)
from a data string. The functionality of unsigned integer decoders is a sub-set of that of floating-
point number decoders. Use a floating-point number decoder for values that can be less or
greater than the range of an unsigned integer, for values that contain fractions, or for values that
use exponential (scientific) notation.

 Page 70

U.P.M.A.C.S. Developer’s Manual Database Objects

The New Numerical Decoder (Unsigned Integer) Dialog

 Decoder number:
Enter the decoder number by which the decoder is identified. Each decoder in an SCL program
must have a unique decoder number.

 Encoding:
Select the encoding method that the number is encoded in. U.P.M.A.C.S. supports the following
encoding methods:

Byte:
A single byte (character) in the command string is used to represent the number as an 8-bit
value. Requires a fixed width of 1.

Multibyte:
Two or more bytes (characters) in the command string are used to represent the number as a 16,
24, or 32-bit value. You can choose between lo-hi and hi-lo byte ordering. If you select lo-hi byte
ordering, the least significant byte (the lower 8 bits) must appear in the response first; if you selct
hi-lo byte ordering, the most significant byte (the upper 8 bits) must appear first. The multibyte
encoding method requires a fixed width of 2, 3, or 4.

BCD:
The number is encoded using Binary Coded Decimal encoding. In BCD encoding, each nibble
(hex digit) in a byte represents one decimal digit. The number 20,841,057 would be encoded as
the byte (character) values hex 20 (32), hex 84 (132), hex 10 (16), and hex 57 (87). The BCD
encoding method requires a fixed width.

Decimal, Hexadecimal, Binary, Octal:
The number is written out as a decimal, hexadecimal, binary, or octal number using ASCII char-
acters. Hexadecimal encoding recognizes both capital and small letters (“A” to “F” and “a” to “f”)
as hex digits.

Do not confuse the byte/multibyte and binary encoding methods. The binary encoding expects
the number to be written out as a series of ASCII characters 1 (hex 31) and 0 (hex 30), not using
the individual bits of each byte.

 Skip leading characters:
Check this box to skip any characters that appear before the number in the data string. This set-
ting only applies to the decimal, hexadecimal, binary, and octal encodings.

 Page 71

U.P.M.A.C.S. Developer’s Manual Database Objects

Only spaces / All non-numerical / Only these:
Specify the characters that are allowed to appear before the number.

 Use fixed width:
Check this check box to require the number to be a fixed number of bytes (characters) long.
Specify the number of bytes in the edit box.

You must check this box for the byte, multibyte, and BCD encoding methods.

Allow trailing characters:
Check this box to allow characters that are not part of the number to appear after it in the data
string. This only applies to characters within the fixed width. All characters are always allowed to
appear beyond the fixed width. Specify the characters that are allowed to appear after the num-
ber using the radio buttons.

This setting only applies to the decimal, hexadecimal, binary, and octal encodings.

Numerical Decoders (Set Of Strings)

Set of strings decoders get a number from the data string using a set of regular expressions. See
Appendix A: Regular Expressions on page 171 for details on regular expressions.

The New Numerical Decoder (Set Of Strings) Dialog

 Decoder number:
Enter the decoder number by which the decoder is identified. Each decoder in an SCL program
must have a unique decoder number.

 Patterns for values:
Shows a list of all values that you specified regular expressions for, together with the expression
that describes the data string for that value. Use the buttons to edit, delete, duplicate, and add
values.

String Decoders

String decoders get a string value from a data string. String decoders use regular expression pat-
terns to recognize the string value. The data is divided into three sections: A prefix, the value, and
a suffix. The prefix and suffix are discarded, and only the value is used.

 Page 72

U.P.M.A.C.S. Developer’s Manual Database Objects

See Appendix A: Regular Expressions on page 171 for details on regular expressions.

The New String Decoder Dialog

 Decoder number:
Enter the decoder number by which the decoder is identified. Each decoder in an SCL program
must have a unique decoder number.

 Prefix:
Enter a regular expression that describes any data that appears before the parameter in the re-
sponse. Any data that matches the prefix will be discarded.

 Pattern:
Enter a regular expression that describes the value here.

 Suffix:
Enter a regular expression that describes any data that appears after the parameter in the re-
sponse. Any data that matches the suffix will be discarded.

Boolean Decoders

Boolean decoders get a Boolean value from a data string. A Boolean value can be either true or
false.

The New Boolean Decoder Dialog

 Decoder number:
Enter the decoder number by which the decoder is identified. Each decoder in an SCL program
must have a unique decoder number.

 Pattern for true:
Enter a regular expression for the true value. The result will be true if this expression is found at
the start of the data.

 Pattern for false:
Enter a regular expression for the false value. The result will be false if this expression is found at
the start of the data.

 Page 73

U.P.M.A.C.S. Developer’s Manual Database Objects

Numerical Encoders (Floating-Point Number)

Floating-point number encoders write a numerical value with virtually unlimited range to a data
string. Floating-point number encoders support decimal fractions as well as exponential (scien-
tific) notation.

The New Numerical Encoder (Floating-Point Number) Dialog

 Encoder number:
Enter the encoder number by which the encoder is identified. Each encoder in an SCL program
must have a unique encoder number.

 Encoding:
Select the encoding method for the number. U.P.M.A.C.S. supports the following encoding meth-
ods:

Byte:
A single byte (character) in the command string is used to represent the number as an 8-bit
value. If you select signed byte encoding, the most significant bit of the byte will be used to de-
note the sign in the standard way (-1 is $FF, -2 is $FE, etc.). If you select unsigned byte encod-
ing, the sign of negative numbers will be ignored, i.e. -20 will be encoded the same as 20. The
byte encoding method requires a fixed width of 1.

Multibyte:
Two or more bytes (characters) in the command string are used to represent the number as a 16,
24, or 32-bit value. You can choose between lo-hi and hi-lo byte ordering. If you select lo-hi byte
ordering, the least significant byte (the lower 8 bits) will be sent first; if you select hi-lo byte order-
ing, the most significant byte (the upper 8 bits) will be sent first. If you select signed multibyte en-
coding, the most significant bit of the most significant byte will be used to denote the sign in the
standard way (for 16-bit values -1 is $FFFF, -2 is $FFFE, etc.). If you select unsigned multibyte
encoding, the sign of negative numbers will be ignored, i.e. -20 will be encoded the same as 20.
The multibyte encoding method requires a fixed width of 2, 3, or 4.

 Page 74

U.P.M.A.C.S. Developer’s Manual Database Objects

BCD:
The number is encoded using Binary Coded Decimal encoding. In BCD encoding, each nibble
(hex digit) in a byte represents one decimal digit. The number 20,841,057 would be encoded as
the byte (character) values hex 20 (32), hex 84 (132), hex 10 (16), and hex 57 (87). The BCD
encoding method requires a fixed width.

Decimal, Hexadecimal, Binary, Octal:
The number is written out as a decimal, hexadecimal, binary, or octal number using ASCII char-
acters.

Do not confuse the byte/multibyte and binary encoding methods. The binary encoding writes the
number out as a series of ASCII characters 1 (hex 31) and 0 (hex 30), it does not encode it using
the individual bits of each byte.

 Show positive (+) sign:
Check this check box if you want a plus sign to be shown for positive values. The plus sign does
not actually have to be the “+” character. You can specify any character you want.

This setting only applies to the decimal encoding.

 Show negative (-) sign:
Check this check box if you want a minus sign to be shown for negative values. The minus sign
does not actually have to be the “-” character. You can specify any character you want.

This setting only applies to the decimal encoding.

 Use thousands separator:
Check this check box if you want digits to be separated into groups of three using a thousands
separators (usually a comma). If you check this box, you must also specify the actual character
used to group digits.

This setting only applies to the decimal encoding.

 Number of decimals:
For the decimal encoding, this field allows you to specify the number of digits shown after the
decimal point. If you do not want decimal digits or a decimal point, enter 0 here.

For all other encodings, this field allows you to specify the number of implied decimals. Implied
decimals are a way of encoding fractions without using a decimal point by multiplying it with a
power of ten before encoding it. A number that is encoded using 3 implied decimals, for example,
will be multiplied by 1000 before it is encoded. This will move the three decimals from the right to
the left of the decimal point, and the decimal point will no longer be needed. 21.304, for example,
will simply be encoded as 21304.

You can use implied decimals with the decimal encoding method as well. Simply set the required
number of decimals in the “Number of decimals” field, and uncheck the “Show decimal marker”
check box described below. No decimal point will then be shown.

Please note that the implied decimals for the hexadecimal, octal, and binary encoding methods
are decimal fractions, not hexadecimal, octal or binary fractions. In hexadecimal encoding with
three implied decimals, 43.249 (which is~2B.3FC in hex) will be written as A8F1 (which is 43249
in decimal) rather than 2B3FC. In other words, the number is always multiplied by powers of 10,
even if the encoding method uses base 16, 2 , or 8.

Show decimal marker:
Clear this check box if you do not want a decimal point to be shown (implied decimals). If you
leave this box checked, you can specify the character to be used as a decimal marker. The deci-
mal marker does not have to be a period, you can use any character you like. This setting only
applies to the decimal encoding.

 Use fixed width:
Check this check box if you want the resulting string to be a fixed number of bytes (characters)
long. Specify the number of bytes in the edit box.

 Page 75

U.P.M.A.C.S. Developer’s Manual Database Objects

You must check this box for the byte, multibyte, and BCD encoding methods.

Pad with zeros / Pad with spaces / Custom padding character:
Specify the character that is to be used to pad the number to the fixed width if it is too short. Only
applies to the decimal, hexadecimal, binary, and octal encodings.

Alignment:
Choose the alignment of the data within the fixed width. You can choose to have any padding
characters added before the sign, between the sign and the number, or after the number. If the
sign is not shown, the Sign-padding-number and Padding-sign-number alignments are the same.
This setting only applies to the decimal, hexadecimal, binary, and octal encodings.

 Use capital letters A-F / small letters a-f as hex digits:
Select whether capital or small letters should be used for hex digits. Only applies to the hexa-
decimal encoding.

 Use exponential notation:
Check this box to use exponential (scientific) notation with the decimal encoding method.

Number of non-decimal digits in the mantissa:
Enter the number of digits that should appear on the left of the decimal point of the mantissa (the
part of the number that is not the exponent). Note that this setting does not necessarily reflect the
number of digits that actually appear before the decimal point. It is merely used to determine the
range of the mantissa. If you specify a value of 0, the mantissa will always be between 0 and 1. If
you specify 1, it will be either 0, or between 1 and 10, etc.. The number 13895.468, for example,
will be shown as 0.13895468E+5 with 0 mantissa digits, as 1.38954680E+4 with one digit, and as
138.95468000E+2 with three digits. The number 0 will always be shown as 0.00000000E+0, re-
gardless of the number of mantissa digits specified. If you want to force 0 to be shown as
000.00000000E+0, you must specify a fixed width, and “0” as the padding character.

Number of digits in the exponent:
Enter the number of digits shown in the exponent. Unlike the number of digits in the mantissa
digits, the exponent will always have exactly the number of digits specified here.

Prefix for positive / negative exponent:
Enter the exponent markers for positive and negative exponents here. The exponent markers
must include the sign of the exponent. Usually, the positive exponent marker is “E+” or “e+”, and
the negative marker is “E-” or “e-”. If you want to omit the plus sign for positive exponents, specify
“E” or “e” for the positive exponent prefix. The exponent prefixes can be any arbitrary data. See
Appendix B: Entering Binary Data on page 179 for details on entering binary data.

Show as text / Show as hex:
Select the way you want to enter the exponent prefixes. See Appendix B: Entering Binary Data on
page 179 for details.

Numerical Encoders (Unsigned Integer)

Unsigned integer encoders write an integer value between 0 and 4,294,967,295 (hex FFFFFFFF)
to a data string. The functionality of unsigned integer encoders is a sub-set of that of floating-point
number encoders. Use a floating-point number encoder for values that can be less or greater
than the range of an unsigned integer, for values that contain fractions, or if you want to use ex-
ponential (scientific) notation.

 Page 76

U.P.M.A.C.S. Developer’s Manual Database Objects

The New Numerical Encoder (Unsigned Integer) Dialog

 Encoder number:
Enter the encoder number by which the encoder is identified. Each encoder in an SCL program
must have a unique encoder number.

 Encoding:
Select the encoding method for the number. U.P.M.A.C.S. supports the following encoding meth-
ods:

Byte:
A single byte (character) in the command string is used to represent the number as an 8-bit
value. Requires a fixed width of 1.

Multibyte:
Two or more bytes (characters) in the command string are used to represent the number as a 16,
24, or 32-bit value. You can choose between lo-hi and hi-lo byte ordering. If you select lo-hi byte
ordering, the least significant byte (the lower 8 bits) will be sent first; if you select hi-lo byte order-
ing, the most significant byte (the upper 8 bits) will be sent first. The multibyte encoding method
requires a fixed width of 2, 3, or 4.

BCD:
The number is encoded using Binary Coded Decimal encoding. In BCD encoding, each nibble
(hex digit) in a byte represents one decimal digit. The number 20,841,057 would be encoded as
the byte (character) values hex 20 (32), hex 84 (132), hex 10 (16), and hex 57 (87). The BCD
encoding method requires a fixed width.

Decimal, Hexadecimal, Binary, Octal:
The number is written out as a decimal, hexadecimal, binary, or octal number using ASCII char-
acters.

Do not confuse the byte/multibyte and binary encoding methods. The binary encoding writes the
number out as a series of ASCII characters 1 (hex 31) and 0 (hex 30), it does not encode it using
the individual bits of each byte.

 Use fixed width:
Check this check box if you want the resulting string to be a fixed number of bytes (characters)
long. Specify the number of bytes in the edit box.

You must check this box for the byte, multibyte, and BCD encoding methods.

 Page 77

U.P.M.A.C.S. Developer’s Manual Database Objects

Pad with zeros / Pad with spaces / Custom padding character:
Specify the character that is to be used to pad the number to the fixed width if it is too short. This
setting only applies to the decimal, hexadecimal, binary, and octal encodings.

Align left / Align right:
Select whether the number should be left or right aligned within the fixed width. If the number is
left aligned, any padding characters will be added to the end of the number; if it is right aligned,
they will be added to the beginning. This setting only applies to the decimal, hexadecimal, binary,
and octal encodings.

 Use capital letters A-F / small letters a-f as hex digits:
Select whether capital or small letters should be used for hex digits. This setting only applies to
the hexadecimal encoding.

Numerical Encoders (Set Of Strings)

Set of strings encoders encode a number using a set of pre-defined data string. You explicitly
specify the data to be used for the different values.

The New Numerical Encoder (Set Of Strings) Dialog

 Encoder number:
Enter the encoder number by which the encoder is identified. Each encoder in an SCL program
must have a unique encoder number.

 Strings to use for values:
Shows a list of all values that you specified data strings for, together with their strings. Use the
buttons to edit, delete, duplicate, and add values.

 String for other values:
Enter the data to use for all values that do not appear in the list above. See Appendix B: Entering
Binary Data on page 179 for details on entering binary data.

 Show as text / Show as hex:
Select the way you want to enter the data strings. See Appendix B: Entering Binary Data on page
179 for details.

 Page 78

U.P.M.A.C.S. Developer’s Manual Database Objects

String Encoders

String encoders write a string value to a data string.

The New String Encoder Dialog

 Encoder number:
Enter the encoder number by which the encoder is identified. Each encoder in an SCL program
must have a unique encoder number.

 Use fixed width:
Check this check box if you want the resulting string to be a fixed number of bytes (characters)
long. Specify the number of bytes in the edit box.

Pad with spaces / Custom padding character:
Specify the character that is to be used to pad the string to the fixed width if it is too short.

Align left / Align right:
Select whether the string should be left or right aligned within the fixed width. If the number is left
aligned, any padding characters will be added to the end of the string, if it is right aligned, they will
be added to the beginning.

 Replace non-printable chars:
Check this check box if you want all non-printable characters (characters other than ASCII $20-
ASCII $7E) in the string replaced. Enter the character that you would like to replace them with in
the box provided.

Boolean Encoders

Boolean encoders write a Boolean value to a data string. A Boolean value can be either true or
false.

 Page 79

U.P.M.A.C.S. Developer’s Manual Database Objects

The New Boolean Encoder Dialog

 Encoder number:
Enter the encoder number by which the encoder is identified. Each encoder in an SCL program
must have a unique encoder number.

 String for true:
Enter the data to be sent if the value is ON. See Appendix B: Entering Binary Data on page 179
for details on entering binary data.

 String for false:
Enter the data to be sent if the value is OFF. See Appendix B: Entering Binary Data on page 179
for details on entering binary data.

 Show as text / Show as hex:
Select the way you want to enter the data strings. See Appendix B: Entering Binary Data on page
179 for details.

Screens

U.P.M.A.C.S. organizes its visual data in screens. A screen contains information about everything
displayed in a single window or dialog. A screen contains graphic objects, which determine what
is shown in the window.

A screen can be displayed in a regular window, or in a dialog window. Regular windows can be
sized, moved, tiled, minimized, maximized, and otherwise manipulated, whereas dialogs can only
be moved, and not sized.

Once a station file has been loaded, a number of windows are opened showing certain screens.
You can specify for each screen whether it should be shown initially in this fashion or not.

Once you have created a screen, a Screen Editor window will appear so that you can add graphi-
cal objects.

If you select a screen in the Screens window, and press the “Edit…” button, the editor window will
appear rather than the Edit Screen dialog. To change the properties of a screen, select it and
press the “Properties…” button. You can also select “Properties…” from the “Edit” menu when
viewing the screen in an editor window.

 Page 80

U.P.M.A.C.S. Developer’s Manual Database Objects

The New Screen Dialog

 Tag:
Enter the tag by which the screen is identified. Each screen must have a unique tag.

 Name:
Enter the name of the screen. Leave this field blank if you want to use the tag as name. The
name of the screen appears in the window’s title bar, as well as in the New Window dialog of the
Operate System.

 Initial size:
Enter the height and width of the screen, in pixels. You can also change the size of the screen
graphically within the Screen Editor.

 Dialog:
Check this box if you want the screen to appear in a dialog rather than a regular window.

 Show screen initially:
Check this box if you want a window containing this screen to appear as soon as the station is
loaded. This option is not available for dialog screens.

 Don’t transmit over network:
Check this box to prevent U.P.M.A.C.S. from transmitting this screen across the network when
someone connects to the station. This means that the screen will only appear on the local com-
puter, not on any remote computers. Use this flag for screens that are used as a network map, for
example.

 Custom background colour:
Check this box to set a background colour for the screen. If you leave this check box blank,
U.P.M.A.C.S. uses the background colour specified in the Display control panel. Press the “Col-
our…” button to set the colour.

 Acknowledge program:
Select an SCL program to execute when the user presses the Acknowledge button. The program
arguments are shown in parentheses after the name of the program, but you only select the pro-
gram from the lists, not the arguments. To change the arguments, use the “Arguments…” button.
See Specifying Arguments for SCL Programs on page 67 for a description of the Edit Program
Arguments dialog.

The Screen Editor

Screen Editor windows are used to edit the graphical objects contained in a screen. The window
will automatically appear when you create a screen. To open an editor window for a screen once
you have closed it, select the program in the Screens window, and press the “Edit…” button, or
double-click on the screen’s name.

 Page 81

U.P.M.A.C.S. Developer’s Manual Database Objects

Creating Graphic Objects

Everything displayed on a screen is a graphic object. There are eight types of objects:

 static objects

 3D objects

 bistate indicators

 multistate indicators

 digital indicators

 analog indicators

 string indicators

 dials

 graphs

 X-Y position markers

 controls (buttons)

 labels

Each object type is described in its own section.

To create a specific type of object, you must first set the drawing properties for the type of object
you wish to draw. Make sure that no graphic objects are selected by clicking on a blank space on
the screen before changing the properties. If any objects are selected, you will change the prop-
erties of those objects instead of the current drawing properties.

 Page 82

U.P.M.A.C.S. Developer’s Manual Database Objects

After setting the properties, choose the correct drawing tool from the “Draw” menu, or by pressing
one of the Drawing Tool buttons.

To draw static objects, bistate indicators, or multistate indicators, you must also select a secon-
dary drawing tool. The secondary drawing tool determines the shape of the object or indicator:
line, rectangle, ellipse, etc.

Once you have selected the tool or tools, click and drag in the editor window to create the graphic
object.

There is a special shape known as a Bezier spline. A Bezier spline is a curved line, and has two
end points and two “helper” points that define the curvature of the line. Static objects, as well as
bistate and multistate indicators can have Bezier spline shape. To draw a Bezier spline, move the
mouse pointer to the starting point of the curve, and click and drag to indicate the direction of the
curved line at that point. Let go of the mouse button, and move the mouse pointer to the end point
of the curve. Click and drag again to indicate the direction of the curve at the end point.

If you are drawing static text, click and drag to define the bounding box of the text. Once you re-
lease the mouse button, a dialog will pop up, asking you to enter the text. Enter the text you wish
to display and press OK.

Selecting, Moving, and Resizing Objects

To move or resize objects, or to change their properties, you must select them. To select objects,
and to move or resize them, you must choose the “Select” or “Reshape” drawing tools. Choose
“Select” or “Reshape” from the “Draw” menu, or press the “Select” or “Reshape” Drawing Tool
buttons:

The “Select” and “Reshape” Drawing Tool buttons

To select an object, click on it with the mouse. To select a group of objects, click anywhere where
there is no graphic object, and drag to create a selection rectangle. When you release the mouse
button, everything completely enclosed in the rectangle will be selected.

Once an object has been selected, the editor draws its edit handles. Edit handles are small
squares of inverted screen surface. On a white screen, the edit handles appear as black squares.
You can drag the object to move it, or drag an edit handle to resize the object. You can move the
selected objects one pixel at a time using the cursor (arrow) keys.

Some objects (Bezier splines and some indicators) have special edit handles called reshape han-
dles. These handles are hollow circles or triangles, rather than solid squares. Reshape handles
are used to change some additional geometry of the objects, and are only visible if you have cho-
sen the Reshape drawing tool.

You can add and remove single objects to/from the selection by clicking on them while holding
down the Shift key. You can add and remove a group of objects by dragging a selection rectangle
while holding down the Shift key. To select all objects, choose “Select All” from the “Edit” menu.

To deselect all objects, click on any blank space on the screen.

Locking the Graphics Tool

Once you have created an object, the drawing tool automatically changes to the Select tool or the
Reshape tool to allow you to make additional changes to the object. If you want to create a series
of objects without having to re-select the drawing tool every time, you can lock the tool. To lock a

 Page 83

U.P.M.A.C.S. Developer’s Manual Database Objects

drawing tool, select “Lock Tool” from the “Draw” menu, or click on the Drawing Tool button a sec-
ond time. A small picture of a padlock will appear on the button to indicate that the tool is locked.
If the tool is locked, it will not revert to the Select or Reshape tool once you have created an ob-
ject.

The Graphics Grid

The screen editor has a graphics grid to help you space objects evenly. The graphics grid con-
sists of regularly spaced points, which may be invisible, or can be shown as dots. You can set a
snap-to-grid option, causing all objects to be created, moved, and resized, to grid points.

To show or hide the grid points, select “Grid” from the “View” menu. To change the spacing of the
grid, choose “Grid Size…” from the “View” menu. To move the grid points so that one is aligned
with the upper left-hand corner of the screen, choose “Align Grid With Screen” from the “View”
menu. To move the grid points so that one is aligned with the current selection, choose “Align
Grid With Selection” from the “View” menu.

To switch grid snap on or off, select “Snap To Grid” from the “Draw” menu. While grid snap is on,
all objects are created, moved, and resized to the nearest grid point.

Editing Object Properties

If you have selected one or more objects, the Drawing Properties window will show the properties
of the selected objects. You can then change the properties of the selected objects in the Draw-
ing Properties.

Some objects have text, and you can modify the text after you have created the object. For some
types of objects, like controls and labels, the text is part of the drawing properties and appears in
the Drawing Properties window. For those types of objects, you can edit the text in the Drawing
Properties window as you would any other property. Some objects, however, have text that does
not appear in the drawing properties. For those objects, you can edit the text one of two ways:

There are buttons in the Drawing Properties window that have a picture of a quill in an ink well on
it. Press that button to edit the text. This will change the text for all selected objects of the same
type.

If you double-click on an object that has text on it, a window will pop up that lets you edit the text.
This will only affect one object at a time, the one you double-clicked on. No other objects are af-
fected, even if they are selected.

Using Properties from Existing Objects to Create New Objects

You can enter the properties of the currently selected objects into the drawing properties used to
create new objects by choosing “Get Properties From Selection” from the “Draw” menu. To draw
an object that has the same drawing properties as an existing object, proceed as follows:

 Select the objects whose properties you want to use.

 Choose “Get Properties From Selection” from the “Draw” menu. This will change the cur-
rent drawing properties to match the selected object’s properties.

 Choose the drawing tool or tools for the object you wish to draw.

 Draw the object.

 Deleting and Copying Objects

 To delete all selected objects, press the Delete key.

You can cut and paste objects between screens. To cut or copy objects, select them, and then
choose “Cut” or “Copy” from the “Edit” menu. To paste objects, Choose “Paste” from the “Edit”
menu. Pasting objects will replace all currently selected objects. You can cut and paste from one

 Page 84

U.P.M.A.C.S. Developer’s Manual Database Objects

screen to another, or within the same screen, but you cannot cut and paste objects from one sta-
tion file to another. There is currently no support for copying object between station files.

You can duplicate objects by selecting them and choosing “Duplicate” from the “Edit” menu. The
new objects will be slightly offset from the original ones. Another easy way to duplicate objects is
to select them, and to click on them, drag them, or resize them while holding down the Ctrl key.

To make multiple, evenly spaced copies of an object, select it, and choose “Duplicate” or Ctrl-
drag it to create the first duplicate. Move the duplicate to its new position, and then repeatedly
choose “Duplicate” from the “Edit” menu (or use the Ctrl-D shortcut key). The new duplicates of
the object will be spaced the same as the original and the first duplicate.

Modifying the Screen Area

You can resize or move the screen area by clicking and dragging the window outline in the
screen editor. You can grab either edge or corner of the window to size it, or grab the hatched
title bar area to move it.

Controlling the Way Indicators Are Displayed

Since the Development System does not actually poll equipment or process any data, the regis-
ters in the Development System do not have any values. This means that the indicators shown in
the Screen Editor cannot reflect the actual values of equipment. You can control the way indica-
tors are displayed, and the values they show.

 State shown by indicators:
To specify the state in which the indicators are to be displayed in the Screen Editor, use the indi-
cator state pop-up menu on the appropriate page of the Drawing Properties window. The indica-
tor state pop-up will show one of the following values:

 Off state

 On state

 Blink state

 Masked state

 Error state

Select the state in which indicators of the type corresponding to the page should be shown.

 Value shown by multistate indicators:
The state pop-up menu on the multistate indicator page does not have the On or Off state selec-
tion. Instead, the menu has options for different values, e.g. Value 0, Value 1, Value 25, etc. If
you select one of these values, all multistate indicators will show that value.

 Value shown by digital, analog, and string indicators:
To specify the value that should be displayed in digital, analog, and string indicators, select “Indi-
cator Values…” from the “View” menu. A dialog will pop up that allows you to enter values for
each type of indicator.

 Value shown by dials, graphs, and X-Y position markers:
Dials, graphs, and X-Y position markers always show the same values. You cannot change the
values shown by these types of indicators.

 Page 85

U.P.M.A.C.S. Developer’s Manual Database Objects

Manipulating Graphic Objects

Front-To-Back Ordering Of Objects

The objects on a screen have a front-to-back ordering. This means that some objects are “in front
of” others, and cover all or part of them. When you create an object other than a control, the ob-
ject is created as the frontmost object, and covers all other objects it overlaps. Controls are al-
ways created as the backmost object, so they don’t cover any objects.

You can change the front to back ordering by using the following menu items of the “Arrange”
menu:

 Raise:
Brings the selected objects one object further forward. You may not immediately see a change,
as the object you are raising may not overlap the object in front of which it moved. If nothing ap-
pears to happen, repeatedly raise the object until you get the desired result.

 Lower:
Sends the selected objects one object further back. You may not immediately see a change, as
the object you are lowering may not overlap the object behind which it moved. If nothing appears
to happen, repeatedly lower the object until you get the desired result.

 Bring To Front:
Brings the selected objects all the way to the front, to hide all other objects that they overlap.

 Send To Back:
Sends the selected objects all the way to the back, to hide none of the objects that they overlap.

Grouping Objects

You can group a number of objects together to act as one object when moving and resizing. To
group objects, select them, and choose “Group” from the “Arrange” menu. You can include a
group of objects previously grouped in a group. To change the group back to its component ob-
jects, select “Ungroup” from the “Arrange” menu.

Flipping/Rotating Objects

You can flip (mirror) and rotate objects by using menu items in the “Arrange” menu. Please note
that all selected objects are flipped and rotated individually about their own centers. To flip or ro-
tate a group of objects together about their common center, group them first. Some objects, like
text and images, cannot be flipped or rotated.

Aligning Objects

You can align the current selection to the nearest grid point by choosing “Align With Grid” from
the “Arrange” menu. All selected objects are aligned together as a group; their position relative to
each other is not changed.

You can also align objects with each other, either by choosing “Align Objects…” from the “Ar-
range” menu or by pressing one of the Alignment Tool buttons.

align
left

edges

align
horizontal

centers
distribute

horizontally

align
vertical
centers

distribute
vertically

align
right

edges

align
top

edges

align
bottom
edges

 Page 86

U.P.M.A.C.S. Developer’s Manual Database Objects

The Alignment Tools window has eight buttons:

Align left edges: Aligns the left edge of all objects with the leftmost object

Align horizontal centers: Aligns the horizontal centers of all objects at the center of the selec-
tion

Align right edges: Aligns the right edge of all objects with the rightmost object

Distribute horizontally: Spaces the objects evenly along the horizontal axis

Align top edges: Aligns the top edge of all objects with the topmost object

Align vertical centers: Aligns the horizontal centers of all objects at the center of the selec-
tion

Align bottom edges: Aligns the bottom edge of all objects with the bottommost object

Distribute vertically: Spaces the objects evenly along the vertical axis

If you choose “Align Objects…” from the “Arrange” menu, the Align Objects dialog will appear.

 Horizontal alignment:
Choose from one of the following alignment options for the horizontal axis:

Don’t Align: Don’t change the horizontal position of the objects

Align left edges: Aligns the left edge of all objects with the leftmost object

Align centerlines: Aligns the horizontal centers of all objects at the center of the selec-
tion

Align right edges: Aligns the right edge of all objects with the rightmost object

Distribute evenly: Spaces the objects evenly along the horizontal axis

 Vertical alignment:
Choose from one of the following alignment options for the vertical axis:

Don’t Align: Don’t change the vertical position of the objects

Align top edges: Aligns the top edge of all objects with the topmost object

 Page 87

U.P.M.A.C.S. Developer’s Manual Database Objects

Align centerlines: Aligns the vertical centers of all objects at the center of the selection

Align bottom edges: Aligns the bottom edge of all objects with the bottommost object

Distribute evenly: Spaces the objects evenly along the vertical axis

Images

Besides lines, Bezier splines, rectangles, ellipses, and text, you can display bitmap images in
U.P.M.A.C.S. These bitmap images are loaded from an U.P.M.A.C.S. Image Library (*.upmacs-
images file) created using the U.P.M.A.C.S. Image Editor.

To load an image library, select “Load Images…” from the “File” menu. You can then use images
from that image library in your station. When you start the Development System, the last image
library you used will be reloaded automatically.

When you save you station, the images you used (but not the ones you didn’t use) are saved in
the station file. When you load a station file, you can use the images in that station file as well as
those in the image library. If, however, you load an image library after you loaded a station, the
images in the station will be overwritten with new images from the image library. Images that are
not in the image library will be replaced by the library’s replacement image. You should therefore
make sure that an image library contains all the necessary images for the current station file be-
fore loading it.

Since the images that are needed for the station are saved in the station file, it is not necessary to
install the image library on the computer where the station will be used. Image libraries are only
used by the Development System, not by the Operate System.

Note: Station files created with versions of U.P.M.A.C.S. prior to v6.0 do not contain the neces-
sary images. If you want to edit an older station file, you must have the corresponding image li-
brary as well.

Static Objects

Static objects never change the way they look. Everything on a screen that does not depend on
states or names of registers, is a static object. Static objects can have one of the following six
shapes:

Lines: Straight lines

Splines: Curved lines, using two end points and two “helper” points

Rectangles: Rectangles, hollow or filled

Ellipses: Ellipses, hollow or filled. This includes circles.

Text: Text

Images: Images from the image library. See Images on page 88 for details on image li-
braries.

There are some special static objects called 3D objects because they have a raised or sunken
look. These objects are discussed in 3D Objects on page 91.

 Drawing static objects:
To draw a static object, proceed as follows:

1. Make sure that no graphic objects are selected by clicking on some empty space in the
editor window.

 Page 88

U.P.M.A.C.S. Developer’s Manual Database Objects

2. Go to the Object Properties page in the Drawing Properties window and set the proper-
ties of the new object. The tab for the Object Properties page is marked with the same
icon as the “Objects” Drawing Tool button (see picture below).

3. Choose “Objects” from the “Draw” menu, or press the “Objects” Drawing Tool button:

The “Objects” Drawing Tool button

If you want to draw more than one object, choose “Lock Tool” from the “Draw” menu, or
press the Drawing Tool button a second time.

4. Choose the secondary tool that corresponds to the shape (see above) that you want to
draw.

5. Draw the object by clicking and dragging on the screen (Splines require two click-and-
drag operations to be drawn).

If you selected the text shape, a dialog will appear. Enter the text in the edit field of the dialog and
press OK.

The Object Properties Page

page tabs

required user level

line width

fill style/ pattern

text font

bold style

text size

image preview

line style

line colour

foreground fill colour

background fill colour

italic style

text colour

edit text button

text alignment

image name

If no graphic object is currently selected, the Object Properties page shows the current drawing
properties for static objects. If any graphic objects are selected, the page shows all the properties
applicable to the selected static objects. Properties that are not applicable to any objects (such as
line width for text objects) appear grayed. If a particular property is different for two selected ob-
jects (e.g. two lines with different line widths are selected), that property will be shown in an inde-
terminate state.

 Page 89

U.P.M.A.C.S. Developer’s Manual Database Objects

 Required user level:
Select the minimum user clearance or the user privilege for the object. If you select a clearance
or privilege other than Show always, the object will only be visible if a user with the specified
clearance or privilege has signed on.

The user clearance of each registered user is defined by the administrator of the Operate Sys-
tem. The privileges are assigned to different user clearances, also by the administrator.

Note: This field is common to all the property pages. A change will affect all types of ob-
jects.

 Page tabs:
Select the properties page here. If any graphic objects are currently selected, the tabs for pages
that do not apply to any of the selected objects are grayed. You can click on any of the tabs to
change to the appropriate page, even those that are grayed.

 Line width:
Select the line width for lines and splines, and for the outline of rectangles and ellipses.

 Line style:
Select the line style (solid, dashed, dotted, etc.) for lines and splines, and for the outline of rec-
tangles and ellipses.

 Line colour:
Select the colour for lines and splines, and for the outline of rectangles and ellipses.

 Fill style/pattern:
Select the fill style or fill pattern for rectangles and ellipses.

 Background fill colour:
If you selected a two-colour pattern as the fill style, select the background colour for the pattern
here.

 Foreground fill colour:
If you selected “Solid colour” as the fill style, select the fill colour here. If you selected a two-
colour pattern as the fill style, select the foreground colour for the pattern here.

 Text font:
Select the font for text. U.P.M.A.C.S. only supports a number of predefined fonts. You cannot add
fonts to this menu.

 Bold style/italic style:
Check these boxes for bold and/or italic text.

 Text size:
Select the text size (pitch) here.

 Text colour:
Select the colour for text here. If no graphic objects are selected, this button is wider and reads
“Colour…” instead of just “C”.

 Edit text button:
This button is only visible if any static objects are selected. Press this button to edit the text of text
objects.

 Alignment:
Select the alignment (justification) for text here.

 Image name:
Select the image for image objects here. The image will appear in the image preview field.

 Image preview:
This field shows the image you have selected in the image name field.

 Page 90

U.P.M.A.C.S. Developer’s Manual Database Objects

3D Objects

3D objects are special types of static object. Like static objects, they never change the way they
look. 3D objects are objects whose colour depends on the colours specified in the Display control
panel. They usually have a raised, sunken, or chiselled appearance. 3D objects come in the fol-
lowing shapes:

 Horizontal dividers

 Vertical dividers

 Group boxes

 Raised areas

 Sunken areas

 Recessed areas

 Cutout areas

 Window colour areas

 Dialog colour areas

All of these objects (except window colour areas) use the colours specified for 3D objects in the
Display control panel.

 Drawing 3D objects:
To draw a 3D object, proceed as follows:

1. Make sure that no graphic objects are selected by clicking on some empty space in the
editor window.

2. Go to the 3D Object Properties page in the Drawing Properties window and set the prop-
erties of the new object. The tab for the 3D Object Properties page is marked with the
same icon as the “3D Objects” Drawing Tool button (see picture below).

3. Choose “3D Objects” from the “Draw” menu, or press the “3D Objects” Drawing Tool but-
ton:

The “3D Objects” Drawing Tool button

If you want to draw more than one object, choose “Lock Tool” from the “Draw” menu, or
press the Drawing Tool button a second time.

4. Draw the object by clicking and dragging on the screen.

 Page 91

U.P.M.A.C.S. Developer’s Manual Database Objects

The 3D Object Properties Page

page tabs

required user level

If no graphic object is currently selected, the 3D Object Properties page shows the current draw-
ing properties for 3D objects. If any graphic objects are selected, the page shows the shape of
the selected 3D objects. If no 3D objects are among the selected objects, the shapes appear
grayed. If two selected labels have different shapes, none of the shapes will be selected.

 Required user level:
Select the minimum user clearance or the user privilege for the object. If you select a clearance
or privilege other than Show always, the object will only be visible if a user with the specified
clearance or privilege has signed on.

The user clearance of each registered user is defined by the administrator of the Operate Sys-
tem. The privileges are assigned to different user clearances, also by the administrator.

Note: This field is common to all the property pages. A change will affect all types of ob-
jects.

 Page tabs:
Select the properties page here. If any graphic objects are currently selected, the tabs for pages
that do not apply to any of the selected objects are grayed. You can click on any of the tabs to
change to the appropriate page, even those that are grayed.

 Horizontal divider:
Select this option to draw a horizontal divider. Dividers are lines with a chiselled appearance.

 Vertical divider:
Select this option to draw a vertical divider. Dividers are lines with a chiselled appearance.

 Group box:
Select this option to draw a group box. Group boxes are rectangles with a chiselled appearance.

 Page 92

U.P.M.A.C.S. Developer’s Manual Database Objects

 Raised area:
Select this option to draw a raised area. Raised areas have the same colour as the background of
dialogs, and they are shaded to appear raised above the rest of the screen.

 Sunken area:
Select this option to draw a sunken area. Sunken areas have the same colour as the background
of dialogs, and they are shaded to appear sunken into the rest of the screen.

 Recessed area:
Select this option to draw a recessed area. Recessed areas have the same colour as the back-
ground of dialogs, and they are shaded to appear recessed into the rest of the screen. Recessed
areas appear recessed more deeply than sunken areas.

 Cutout area:
Select this option to draw a cutout area. Cutout areas have the same colour as the background of
regular windows, and they are shaded to appear recessed back from the rest of the screen.

 Window colour area:
Select this option to draw a window colour area. Window colour areas have the same colour as
the background of regular windows.

 Dialog colour area:
Select this option to draw a dialog colour area. Dialog colour areas have the same colour as the
background of dialogs.

Indicators

Indicators are graphic objects that change their appearance to represent the state or value of a
register.

The State of an Indicator

The state of the register associated with an indicator controls some visual aspects of it, like line
width or text colour. This is termed the state of the indicator.

 The different states:
The state of an indicator depends on the ON/OFF state and error and masked state of the regis-
ter. It can be one of the following:

 On state: The register is in alarm or ON state

 Off state: The register is in alarm clear or OFF state

 Error state: The register contains no data

 Masked state: The register has been masked

There is one additional state for registers with Alarm or Latching alarm levels. If an alarm register
is in its alarm state, and has not been acknowledged, its indicators flash to indicate the fault. The
flashing is created by alternating the appearance of the indicator between the On state and a spe-
cial state, the Blink state:

 Blink state: Used to create flashing for unacknowledged alarms

Multistate indicators do not have the On or Off state. Multistate indicators reflect the state and
value of a digital register. Each value of the register corresponds to a state of the indicator, and
these states replace the On and Off state. If a multistate indicator has an alarm register associ-

 Page 93

U.P.M.A.C.S. Developer’s Manual Database Objects

ated with it, it flashes between the Blink state and the state that corresponds to the register’s cur-
rent value.

Graphs do not have any states at all. They look the same in the On and Off state, and are invisi-
ble in the Error and Masked state.

 How states are displayed:
The state of an indicator determines the drawing properties of the graphic object. Drawing proper-
ties include colours, line width and style, fill style, font, and text size, style, and alignment. In
many cases, the properties also include the text displayed for text type indicators.

The state of an indicator cannot change its shape or dimensions. You cannot make an indicator
that turns from a circle into a square or from a large circle to a small circle when changing states.
To implement such functionality, place two indicators on top of each other.

 Enabled and disabled states:
An indicator need not have a set of properties defined for every state. If properties are defined for
a certain state, the state is said to be enabled. If no properties are defined, the state is disabled,
and the indicator will be invisible if in that state.

 Viewing and modifying states:
Each Indicator Properties page has a rectangle that encloses the properties that vary with the
indicator state. At the top of the rectangle is the state pop-up menu, and the state enable check
box:

state enable

state pop-up menu

The state pop-up menu and enable check box

All indicators of the type corresponding to a property page are displayed as if in the state selected
in the state pop-up menu, and the properties displayed in the rectangle are the properties for that
state. To view the properties for a state, or to view the indicator in a certain state, select that state
in the pop-up menu.

To enable or disable a state, use the Enable check box. If the Enable check box is not checked,
the state is disabled and the indicator will be invisible in that state.

If the Blink state is selected in the pop-up menu, indicators associated with alarms are displayed
as flashing on the screen. Indicators associated with non-alarm registers are shown in the On
state, and are never displayed as flashing. The properties shown in the rectangle still correspond
to the Blink state, but the Blink state is never used for non-alarm indicators.

The Value of an Indicator

Digital indicators, analog indicators, and string indicators show the value of a register as text. The
value of the indicator is constructed from the value of the register by prepending a prefix string
and appending a suffix string to it. The prefix and suffix are fixed, and do not change with the
state or value.

If the register associated with the indicator is in the error or masked state, it contains no value.
The value of the indicator is then set to a string that you specify in the drawing properties. The
strings for error and masked state are maintained separately and can be different. The prefix
string and suffix strings are not affixed to the error and masked strings.

Dials, graphs, and X-Y position markers also display the value of one or more indicators. The val-
ues are not displayed as text, however.

 Page 94

U.P.M.A.C.S. Developer’s Manual Database Objects

Text Used in Indicators

The percentage sign (“%”) character has a special meaning in strings used in indicators. This in-
cludes text used in bistate and multistate indicators, and the prefix and suffix strings and error
and masked strings of digital, analog, and string indicators, as well as the labels of X-Y position
markers.

A percentage sign in indicator text will be replaced by the name of the register the indicator is
associated with. If the register is called “Pol B HPA RF” then

% switched on

will be displayed as:

Pol B HPA RF switched on

To display a percentage sign (“%”), put two percentage signs (“%%”) in the text:

17%% aqueous solution of ethanol

will be displayed as:

17% aqueous solution of ethanol

Bistate Indicators

Bistate indicators change the way they look depending on the ON/OFF state of any type of regis-
ter.

Bistate indicators can have one of the following six shapes:

Lines: Straight lines

Splines: Curved lines, using two end points and two “helper” points

Rectangles: Rectangles, hollow or filled

Ellipses: Ellipses, hollow or filled. This includes circles.

Text: Text

Images: Images from the image library. See Images on page 88 for details on image li-
braries.

The drawing properties of the shape (line width, image, etc.) as well as the text for the text shape
vary according to the state of the register.

 Drawing bistate indicators:
To draw a bistate indicator, proceed as follows:

1. Make sure that no graphic objects are selected by clicking on some empty space in the
editor window.

2. Go to the Bistate Indicator Properties page in the Drawing Properties window and set the
properties of the new indicator. Use the state pop-up menu to set the properties for the
different states. The tab for the Bistate Indicator Properties page is marked with the same

 Page 95

U.P.M.A.C.S. Developer’s Manual Database Objects

icon as the “Bistate” Drawing Tool button (see picture below). Make sure to select a reg-
ister, or you will not be able to select the “Bistate” Drawing Tool.

3. Choose “Bistate Indicators” from the “Draw” menu, or press the “Bistate” Drawing Tool
button:

The “Bistate” Drawing Tool button

You will not be able to select this tool if you failed to select a register in step 2. If you
want to draw more than one indicator, choose “Lock Tool” from the “Draw” menu, or
press the Drawing Tool button a second time.

4. Choose the secondary tool that corresponds to the shape (see above) that you want to
draw.

5. Draw the indicator by clicking and dragging on the screen (Splines require two click-and-
drag operations to be drawn).

The Bistate Indicator Properties Page

line width

fill style/ pattern

text font

bold style

text size

image preview

line style

line colour

foreground fill colour

background fill colour

italic style

text colour

edit text button

text alignment

image name

state enable

register
state pop-up menu

page tabs

required user level

If no graphic object is currently selected, the Bistate Indicator Properties page shows the current
drawing properties for bistate indicators. If any graphic objects are selected, the page shows all
the properties applicable to the selected bistate indicators. Properties that are not applicable to
any objects (such as line width for text shape indicators) appear grayed. If a particular property is
different for two selected bistate indicators (e.g. two lines with different line widths are selected),
that property will be shown in an indeterminate state.

 Page 96

U.P.M.A.C.S. Developer’s Manual Database Objects

 Required user level:
Select the minimum user clearance or the user privilege for the object. If you select a clearance
or privilege other than Show always, the object will only be visible if a user with the specified
clearance or privilege has signed on.

The user clearance of each registered user is defined by the administrator of the Operate Sys-
tem. The privileges are assigned to different user clearances, also by the administrator.

Note: This field is common to all the property pages. A change will affect all types of ob-
jects.

 Page tabs:
Select the properties page here. If any graphic objects are currently selected, the tabs for pages
that do not apply to any of the selected objects are grayed. You can click on any of the tabs to
change to the appropriate page, even those that are grayed.

 Register:
Select the register whose state you want to display. If you do not select a register, you will not be
able to draw bistate indicators.

 State pop-up menu:
Use this pop-up menu to view and change the properties for the different indicator states. All
bistate indicators will be displayed in the selected state. If you select “Blink state”, alarm indica-
tors will flash.

 State enable:
Check this checkbox to enable the state. If you leave this box blank, the indicator will be invisible
when in this state. A bistate indicator must have at least one state enabled.

 Line width:
Select the line width for lines and splines, and for the outline of rectangles and ellipses.

 Line style:
Select the line style (solid, dashed, dotted, etc.) for lines and splines, and for the outline of rec-
tangles and ellipses.

 Line colour:
Select the colour for lines and splines, and for the outline of rectangles and ellipses.

 Fill style/pattern:
Select the fill style or fill pattern for rectangles and ellipses.

 Background fill colour:
If you selected a two-colour pattern as the fill style, select the background colour for the pattern
here.

 Foreground fill colour:
If you selected “Solid colour” as the fill style, select the fill colour here. If you selected a two-
colour pattern as the fill style, select the foreground colour for the pattern here.

 Text font:
Select the font for text. U.P.M.A.C.S. only supports a number of predefined fonts. You cannot add
fonts to this menu.

 Bold style/italic style:
Check these boxes for bold and/or italic text.

 Text size:
Select the text size (pitch) here.

 Text colour:
Select the colour for text here.

 Page 97

U.P.M.A.C.S. Developer’s Manual Database Objects

 Edit text button:
Press this button to edit the text of text shape indicators. The text is converted as described under
Text Used in Indicators.

 Alignment:
Select the alignment (justification) for text here.

 Image name:
Select the image for image objects here. The image will appear in the image preview field.

 Image preview:
This field shows the image you have selected in the image name field.

Multistate Indicators

Multistate indicators reflect the state and value of a digital register. The indicator can have a dif-
ferent state for each value of the register.

Multistate indicators can have one of the following six shapes:

Lines: Straight lines

Splines: Curved lines, using two end points and two “helper” points

Rectangles: Rectangles, hollow or filled

Ellipses: Ellipses, hollow or filled. This includes circles.

Text: Text

Images: Images from the image library. See Images on page 88 for details on image li-
braries.

The drawing properties of the shape (line width, image, etc.) as well as the text for the text shape
vary according to the state and value of the register.

 Drawing multistate indicators:
To draw a multistate indicator, proceed as follows:

1. Make sure that no graphic objects are selected by clicking on some empty space in the
editor window.

2. Go to the Multistate Indicator Properties page in the Drawing Properties window and set
the properties of the new indicator. Use the state pop-up menu to set the properties for
the different states and values. If a value you want to use is not shown in the menu, enter
it into the field where the state is displayed, and press the Enter key. Do not prefix the
value with “Value”, the Development System does this for you.

The tab for the Multistate Indicator Properties page is marked with the same icon as the
“Multistate” Drawing Tool button (see picture below). Make sure to select a register, or
you will not be able to select the “Multistate” Drawing Tool.

3. Choose “Multistate Indicators” from the “Draw” menu, or press the “Multistate” Drawing
Tool button:

The “Multistate” Drawing Tool button

 Page 98

U.P.M.A.C.S. Developer’s Manual Database Objects

You will not be able to select this tool if you failed to select a register in step 2. If you
want to draw more than one indicator, choose “Lock Tool” from the “Draw” menu, or
press the Drawing Tool button a second time.

4. Choose the secondary tool that corresponds to the shape (see above) that you want to
draw.

5. Draw the indicator by clicking and dragging on the screen (Splines require two click-and-
drag operations to be drawn).

The Multistate Indicator Properties Page

line width

fill style/ pattern

text font

bold style

text size

image preview

line style

line colour

foreground fill colour

background fill colour

italic style

text colour

edit text button

text alignment

image name

state enable

state pop-up menu
register

page tabs

required user level

If no graphic object is currently selected, the Multistate Indicator Properties page shows the cur-
rent drawing properties for multistate indicators. If any graphic objects are selected, the page
shows all the properties applicable to the selected multistate indicators. Properties that are not
applicable to any objects (such as line width for text shape indicators) appear grayed. If a particu-
lar property is different for two selected objects (e.g. two lines with different line widths are se-
lected), that property will be shown in an indeterminate state.

 Required user level:
Select the minimum user clearance or the user privilege for the object. If you select a clearance
or privilege other than Show always, the object will only be visible if a user with the specified
clearance or privilege has signed on.

The user clearance of each registered user is defined by the administrator of the Operate Sys-
tem. The privileges are assigned to different user clearances, also by the administrator.

Note: This field is common to all the property pages. A change will affect all types of ob-
jects.

 Page 99

U.P.M.A.C.S. Developer’s Manual Database Objects

 Page tabs:
Select the properties page here. If any graphic objects are currently selected, the tabs for pages
that do not apply to any of the selected objects are grayed. You can click on any of the tabs to
change to the appropriate page, even those that are grayed.

 Register:
Select the register whose state and value you want to display. If you do not select a register, you
will not be able to draw multistate indicators.

 State pop-up menu:
Use this pop-up menu to view and change the properties for the different indicator states. All
multistate indicators will be displayed in the selected state. If you select “Blink state”, alarm indi-
cators will flash.

If a value you want to use is not shown in the menu, enter it into the field where the state is dis-
played, and press the Enter key. Do not prefix the value with “Value”, the Development System
does this for you.

 State enable:
Check this checkbox to enable the state or value. If you leave this box blank, the indicator will be
invisible when in this state. A multistate indicator must have at least one state corresponding to a
register value enabled.

 Line width:
Select the line width for lines and splines, and for the outline of rectangles and ellipses.

 Line style:
Select the line style (solid, dashed, dotted, etc.) for lines and splines, and for the outline of rec-
tangles and ellipses.

 Line colour:
Select the colour for lines and splines, and for the outline of rectangles and ellipses.

 Fill style/pattern:
Select the fill style or fill pattern for rectangles and ellipses.

 Background fill colour:
If you selected a two-colour pattern as the fill style, select the background colour for the pattern
here.

 Foreground fill colour:
If you selected “Solid colour” as the fill style, select the fill colour here. If you selected a two-
colour pattern as the fill style, select the foreground colour for the pattern here.

 Text font:
Select the font for text. U.P.M.A.C.S. only supports a number of predefined fonts. You cannot add
fonts to this menu.

 Bold style/italic style:
Check these boxes for bold and/or italic text.

 Text size:
Select the text size (pitch) here.

 Text colour:
Select the colour for text here.

 Edit text button:
Press this button to edit the text of text shape indicators. The text is converted as described under
Text Used in Indicators.

 Alignment:
Select the alignment (justification) for text here.

 Page 100

U.P.M.A.C.S. Developer’s Manual Database Objects

 Image name:
Select the image for image objects here. The image will appear in the image preview field.

 Image preview:
This field shows the image you have selected in the image name field.

Digital Indicators

Digital indicators display the value of a digital register. The text properties can vary according to
the state of the register.

If the register is in the ON or OFF state, the digital indicator displays the value of the register. The
value is displayed as a number, and optionally padded with zeros to a specified number of digits.

A prefix string is prepended to the value, and a suffix string is appended. Optionally, the prefix
and suffix can be shown in a special margin. The prefix is always right-aligned in the margin,
while the suffix is left-aligned.

If the register is in the error or masked state, a user-defined string is displayed. The strings for
error and masked state are maintained separately and can be different. The prefix and suffix
strings are not used with the error and masked strings, and any prefix and suffix margins are
empty.

 Drawing digital indicators:
To draw a digital indicator, proceed as follows:

1. Make sure that no graphic objects are selected by clicking on some empty space in the
editor window.

2. Go to the Digital Indicator Properties page in the Drawing Properties window and set the
properties of the new indicator. Use the state pop-up menu to set the properties for the
different states. The tab for the Digital Indicator Properties page is marked with the same
icon as the “Digital” Drawing Tool button (see picture below). Make sure to select a regis-
ter, or you will not be able to select the “Digital” Drawing Tool.

3. Choose “Digital Indicators” from the “Draw” menu, or press the “Digital” Drawing Tool but-
ton:

The “Digital” Drawing Tool button

You will not be able to select this tool if you failed to select a register in step 2. If you
want to draw more than one indicator, choose “Lock Tool” from the “Draw” menu, or
press the Drawing Tool button a second time.

4. Draw the indicator by clicking and dragging on the screen.

5. If you want to display the prefix and/or suffix in a special margin, you must move the mar-
gin markers of the indicator. The margin markers are only visible when the “Reshape”
tool is selected:

prefix margin
marker

suffix margin
marker

The margin markers

 Page 101

U.P.M.A.C.S. Developer’s Manual Database Objects

To attach the prefix or suffix to the value, move the margin marker all the way to the edge
of the indicator, until the margin has disappeared.

The Digital Indicator Properties Page

text font

bold style

text size

italic style

text colour

edit text button

text alignment

state enable

state pop-up menu

register

page tabs

required user level

If no graphic object is currently selected, the Digital Indicator Properties page shows the current
drawing properties for digital indicators. If any graphic objects are selected, the page shows all
the properties applicable to the selected digital indicators. Properties that are not applicable to
any objects (such as text properties for disabled states) appear grayed. If a particular property is
different for two selected digital indicators (e.g. two indicators with different suffixes are selected),
that property will be shown in an indeterminate state.

 Required user level:
Select the minimum user clearance or the user privilege for the object. If you select a clearance
or privilege other than Show always, the object will only be visible if a user with the specified
clearance or privilege has signed on.

The user clearance of each registered user is defined by the administrator of the Operate Sys-
tem. The privileges are assigned to different user clearances, also by the administrator.

Note: This field is common to all the property pages. A change will affect all types of ob-
jects.

 Page tabs:
Select the properties page here. If any graphic objects are currently selected, the tabs for pages
that do not apply to any of the selected objects are grayed. You can click on any of the tabs to
change to the appropriate page, even those that are grayed.

 Register:
Select the register whose value you want to display. If you do not select a register, you will not be
able to draw digital indicators.

 Page 102

U.P.M.A.C.S. Developer’s Manual Database Objects

 Prefix:
Enter the prefix here. The prefix is converted as described under Text Used in Indicators.

 Suffix:
Enter the suffix here. The suffix is converted as described under Text Used in Indicators.

 Base:
Select the numerical base that the number is to be displayed in.

 Minimum digits:
Select the minimum number of digits to display. If the value has less digits than is specified here,
it is padded with zero to the required number of digits.

 State pop-up menu:
Use this pop-up menu to view and change the properties for the different indicator states. All digi-
tal indicators will be displayed in the selected state. If you select “Blink state”, alarm indicators will
flash.

 State enable:
Check this checkbox to enable the state. If you leave this box blank, the indicator will be invisible
when in this state. A digital indicator must have at least one state other than the Error or Masked
state enabled.

 Text font:
Select the font for text. U.P.M.A.C.S. only supports a number of predefined fonts. You cannot add
fonts to this menu.

 Bold style/italic style:
Check these boxes for bold and/or italic text.

 Text size:
Select the text size (pitch) here.

 Text colour:
Select the colour for text here. For the On, Off, and Blink states, this button is wider and reads
“Colour…” instead of just “C”.

 Edit text button:
This button is only visible for the Error and Masked states. Press this button to edit the text dis-
played for that state. The text is converted as described under Text Used in Indicators.

 Alignment:
Select the alignment (justification) for text here. The alignment does not affect any prefix or suffix
that is shown in its special margin. The prefix is always right-aligned within the margin, the suffix
left aligned.

Analog Indicators

Analog indicators display the value of an analog register. The text properties can vary according
to the state of the register.

If the register is in the ON or OFF state, the analog indicator displays the value of the register.
The register value is displayed as a number, either as is, or it can be modified using a factor and
an offset. The number displayed is calculated from the value of the register as follows:

display = value · factor + offset

To display the value unaltered, use a factor of 1 and an offset of 0.

 Page 103

U.P.M.A.C.S. Developer’s Manual Database Objects

You can specify the number of digits displayed after the decimal point. The number is rounded to
the correct number of decimals. Optionally, a plus sign can be shown for positive numbers. You
can also use exponential (scientific) notation for the number.

A prefix string is prepended to the value, and a suffix string is appended. Optionally, the prefix
and suffix can be shown in a special margin. The prefix is always right-aligned in the margin,
while the suffix is left-aligned.

Analog registers can be set to have a user configurable precision and units. The precision config-
ured by the user will override the precision you specify when you create the analog indicator. The
units configured by the user will be appended to the suffix specified in the indicator.

If the register is in the error or masked state, a user-defined string is displayed. The strings for
error and masked state are maintained separately and can be different. The prefix and suffix
strings are not used with the error and masked strings, and any prefix and suffix margins are
empty.

 Drawing analog indicators:
To draw an analog indicator, proceed as follows:

1. Make sure that no graphic objects are selected by clicking on some empty space in the
editor window.

2. Go to the Analog Indicator Properties page in the Drawing Properties window and set the
properties of the new indicator. Use the state pop-up menu to set the properties for the
different states. The tab for the Analog Indicator Properties page is marked with the same
icon as the “Analog” Drawing Tool button (see picture below). Make sure to select a reg-
ister, or you will not be able to select the “Analog” Drawing Tool.

3. Choose “Analog Indicators” from the “Draw” menu, or press the “Analog” Drawing Tool
button:

The “Analog” Drawing Tool button

You will not be able to select this tool if you failed to select a register in step 2. If you
want to draw more than one indicator, choose “Lock Tool” from the “Draw” menu, or
press the Drawing Tool button a second time.

4. Draw the indicator by clicking and dragging on the screen.

5. If you want to display the prefix and/or suffix in a special margin, you must move the mar-
gin markers of the indicator. The margin markers are only visible when the “Reshape”
tool is selected:

prefix margin
marker

suffix margin
marker

The margin markers

To attach the prefix or suffix to the value, move the margin marker all the way to the edge
of the indicator, until the margin has disappeared.

 Page 104

U.P.M.A.C.S. Developer’s Manual Database Objects

The Analog Indicator Properties Page

page tabs

required user level

text font

bold style

text size

italic style

text colour

edit text button

text alignment

state enable

state pop-up menu

register

If no graphic object is currently selected, the Analog Indicator Properties page shows the current
drawing properties for analog indicators. If any graphic objects are selected, the page shows all
the properties applicable to the selected analog indicators. Properties that are not applicable to
any objects (such as text properties for disabled states) appear grayed. If a particular property is
different for two selected analog indicators (e.g. two indicators with different suffixes are se-
lected), that property will be shown in an indeterminate state.

 Required user level:
Select the minimum user clearance or the user privilege for the object. If you select a clearance
or privilege other than Show always, the object will only be visible if a user with the specified
clearance or privilege has signed on.

The user clearance of each registered user is defined by the administrator of the Operate Sys-
tem. The privileges are assigned to different user clearances, also by the administrator.

Note: This field is common to all the property pages. A change will affect all types of ob-
jects.

 Page tabs:
Select the properties page here. If any graphic objects are currently selected, the tabs for pages
that do not apply to any of the selected objects are grayed. You can click on any of the tabs to
change to the appropriate page, even those that are grayed.

 Register:
Select the register whose value you want to display. If you do not select a register, you will not be
able to draw analog indicators.

 Prefix:
Enter the prefix here. The prefix is converted as described under Text Used in Indicators.

 Suffix:
Enter the suffix here. The suffix is converted as described under Text Used in Indicators.

 Page 105

U.P.M.A.C.S. Developer’s Manual Database Objects

 Value:
Select which value to use.

Current:
Select this option for registers with a size of one value, or to use the value with the greatest index
of a register with a size of more than one value. This corresponds to the last value added by an
SCL program.

Highest:
Select this option to use the highest of all the register’s values.

Lowest:
Select this option to use the lowest of all the register’s values.

 Decimals:
Enter the number of digits to appear after the decimal point. The number will be rounded to the
specified number of decimals, or padded with zeros to the right, as necessary.

 Show plus sign:
Check this box if you want a plus sign to be prepended to positive numbers.

 The “Exponent…” button:
Press this button to switch exponential (scientific) notation on and off, and to configure the expo-
nent. See Analog Indicator Exponential Notation on page 107 for a description of the Edit Expo-
nential Notation dialog.

 The “Fact/off…” button:
Press this button to change the factor and offset of the indicator.

 State pop-up menu:
Use this pop-up menu to view and change the properties for the different indicator states. All ana-
log indicators will be displayed in the selected state. If you select “Blink state”, alarm indicators
will flash.

 State enable:
Check this checkbox to enable the state. If you leave this box blank, the indicator will be invisible
when in this state. An analog indicator must have at least one state other than the Error or
Masked state enabled.

 Text font:
Select the font for text. U.P.M.A.C.S. only supports a number of predefined fonts. You cannot add
fonts to this menu.

 Bold style/italic style:
Check these boxes for bold and/or italic text.

 Text size:
Select the text size (pitch) here.

 Text colour:
Select the colour for text here. For the On, Off, and Blink states, this button is wider and reads
“Colour…” instead of just “C”.

 Edit text button:
This button is only visible for the Error and Masked states. Press this button to edit the text dis-
played for that state. The text is converted as described under Text Used in Indicators.

 Alignment:
Select the alignment (justification) for text here. The alignment does not affect any prefix or suffix
that is shown in its special margin. The prefix is always right-aligned within the margin, the suffix
left aligned.

 Page 106

U.P.M.A.C.S. Developer’s Manual Database Objects

Analog Indicator Exponential Notation

Analog indicators can display their register’s value using exponential (scientific) notation. To edit
the exponential notation settings for analog indicators, press the “Exponent…” button in the Ana-
log Indicator Properties page.

The Edit Exponential Notation Dialog

If no graphic object is currently selected, the Edit Exponential Notation dialog shows the current
drawing properties for the exponent of analog indicators. If any graphic objects are selected, the
dialog shows all the properties applicable to the selected analog indicators. Properties that are
not applicable to any objects (such as the text properties for indicators that have no exponent)
appear grayed. If a particular property is different for two selected analog indicators (e.g. two indi-
cators with different exponent markers are selected), that property will be shown in an indetermi-
nate state.

 Use exponential notation:
Check this box to use exponential (scientific) notation for the value.

 Exponent marker:
Enter the exponent marker here. The exponent marker is placed between the mantissa and the
exponent. Usually, the exponent marker should be “ · 10”, “ E”, or “ e”.

 Number of digits:
Enter the number of digits you want to show in the exponent.

 Show plus sign:
Check this box if you want a plus sign to be prepended to positive exponents.

 Font:
Select the font for the exponent. Select <Same as mantissa> to use the same font for exponent
and mantissa.

 Reduce by:
Select the amount (in points) that the exponent should be smaller than the mantissa. Please note
than Windows cannot display all fonts in all sizes. The window font, for example, will usually not
shrink below 14 point. Select “Arial”, “Times New Roman”, or “Courier New” if the font you se-
lected refuses to shrink the specified amount.

This setting only affects the exponent itself, not the exponent marker.

 Raise by:
Select the number of points that the exponent should be raised above the mantissa and exponent
marker. The baseline (bottom) of the exponent will be raised the specified amount above the
baseline of the mantissa.

 Page 107

U.P.M.A.C.S. Developer’s Manual Database Objects

String Indicators

String indicators display the value of a string register. The text properties can vary according to
the state of the register.

If the register is in the ON or OFF state, the string indicator displays the value of the register as
an ASCII string.

A prefix string is prepended to the value, and a suffix string is appended. Optionally, the prefix
and suffix can be shown in a special margin. The prefix is always right-aligned if it is displayed in
the margin, while the suffix is left-aligned.

If the register is in the error or masked state, a user-defined string is displayed. The strings for
error and masked state are maintained separately and can be different. The prefix and suffix
strings are not used with the error and masked strings, and any prefix and suffix margins are
empty.

 Drawing string indicators:
To draw a string indicator, proceed as follows:

1. Make sure that no graphic objects are selected by clicking on some empty space in the
editor window.

2. Go to the String Indicator Properties page in the Drawing Properties window and set the
properties of the new indicator. Use the state pop-up menu to set the properties for the
different states. The tab for the String Indicator Properties page is marked with the same
icon as the “String” Drawing Tool button (see picture below). Make sure to select a regis-
ter, or you will not be able to select the “String” Drawing Tool.

3. Choose “String Indicators” from the “Draw” menu, or press the “String” Drawing Tool but-
ton:

The “String” Drawing Tool button

You will not be able to select this tool if you failed to select a register in step 2. If you
want to draw more than one indicator, choose “Lock Tool” from the “Draw” menu, or
press the Drawing Tool button a second time.

4. Draw the indicator by clicking and dragging on the screen.

5. If you want to display the prefix and/or suffix in a special margin, you must move the mar-
gin markers of the indicator. The margin markers are only visible when the “Reshape”
tool is selected:

prefix margin
marker

suffix margin
marker

The margin markers

To attach the prefix or suffix to the value, move the margin marker all the way to the edge
of the indicator, until the margin has disappeared.

 Page 108

U.P.M.A.C.S. Developer’s Manual Database Objects

The String Indicator Properties Page

text font

bold style

text size

italic style

text colour

edit text button

text alignment

state enable

state pop-up menu

register

page tabs

required user level

If no graphic object is currently selected, the String Indicator Properties page shows the current
drawing properties for string indicators. If any graphic objects are selected, the page shows all the
properties applicable to the selected string indicators. Properties that are not applicable to any
objects (such as text properties for disabled states) appear grayed. If a particular property is dif-
ferent for two selected string indicators (e.g. two indicators with different suffixes are selected),
that property will be shown in an indeterminate state.

 Required user level:
Select the minimum user clearance or the user privilege for the object. If you select a clearance
or privilege other than Show always, the object will only be visible if a user with the specified
clearance or privilege has signed on.

The user clearance of each registered user is defined by the administrator of the Operate Sys-
tem. The privileges are assigned to different user clearances, also by the administrator.

Note: This field is common to all the property pages. A change will affect all types of ob-
jects.

 Page tabs:
Select the properties page here. If any graphic objects are currently selected, the tabs for pages
that do not apply to any of the selected objects are grayed. You can click on any of the tabs to
change to the appropriate page, even those that are grayed.

 Register:
Select the register whose value you want to display. If you do not select a register, you will not be
able to draw string indicators.

 Prefix:
Enter the prefix here. The prefix is converted as described under Text Used in Indicators.

 Suffix:
Enter the suffix here. The suffix is converted as described under Text Used in Indicators.

 Page 109

U.P.M.A.C.S. Developer’s Manual Database Objects

 State pop-up menu:
Use this pop-up menu to view and change the properties for the different indicator states. All
string indicators will be displayed in the selected state. If you select “Blink state”, alarm indicators
will flash.

 State enable:
Check this checkbox to enable the state. If you leave this box blank, the indicator will be invisible
when in this state. A string indicator must have at least one state other than the Error or Masked
state enabled.

 Text font:
Select the font for text. U.P.M.A.C.S. only supports a number of predefined fonts. You cannot add
fonts to this menu.

 Bold style/italic style:
Check these boxes for bold and/or italic text.

 Text size:
Select the text size (pitch) here.

 Text colour:
Select the colour for text here. For the On, Off, and Blink states, this button is wider and reads
“Colour…” instead of just “C”.

 Edit text button:
This button is only visible for the Error and Masked states. Press this button to edit the text dis-
played for that state. The text is converted as described under Text Used in Indicators.

 Alignment:
Select the alignment (justification) for text here. The alignment does not affect any prefix or suffix
that is shown in its special margin. The prefix is always right-aligned within the margin, the suffix
left aligned.

Dials

Dials display the value of an analog register in form of a slider or a coloured bar. A dial consist of
three parts; a bottom, a top, and a marker:

bottom only bottom and
top

marker only marker, top,
and bottom

Dials can also slide from left to right rather than from top to bottom. The marker can be an image
or a line.

A dial has a bottom and a top value. The dial will be all the way at the bottom (or left) if the regis-
ter has the bottom value or less, and all the way at the top (or right) if it has the top value. For
values between the top and the bottom value, the dial will be between the bottom and the top.

 Drawing dials:
To draw a dial, proceed as follows:

1. Make sure that no graphic objects are selected by clicking on some empty space in the
editor window.

 Page 110

U.P.M.A.C.S. Developer’s Manual Database Objects

2. Go to the Dial Properties page in the Drawing Properties window and set the properties
of the new dial. Use the state pop-up menu to set the properties for the different states.
The tab for the Dial Properties page is marked with the same icon as the “Dials” Drawing
Tool button (see picture below). Make sure to select a register, or you will not be able to
select the “Dials” Drawing Tool.

3. Choose “Dials” from the “Draw” menu, or press the “Dials” Drawing Tool button:

The “Dials” Drawing Tool button

You will not be able to select this tool if you failed to select a register in step 2. If you
want to draw more than one dial, choose “Lock Tool” from the “Draw” menu, or press the
Drawing Tool button a second time.

4. Draw the dial by clicking and dragging on the screen.

The Dial Properties Page

line width

fill style/ pattern

image preview

line style

line colour

foreground fill colour

background fill colour

image name

state enable

register

state pop-up menu

page tabs

required user level

If no graphic object is currently selected, the Dial Properties page shows the current drawing
properties for dials. If any graphic objects are selected, the page shows all the properties applica-
ble to the selected dials. Properties that are not applicable to any objects (such as line properties
for disabled states) appear grayed. If a particular property is different for two selected dials (e.g.
two dials with different top values are selected), that property will be shown in an indeterminate
state.

 Required user level:
Select the minimum user clearance or the user privilege for the object. If you select a clearance
or privilege other than Show always, the object will only be visible if a user with the specified
clearance or privilege has signed on.

 Page 111

U.P.M.A.C.S. Developer’s Manual Database Objects

The user clearance of each registered user is defined by the administrator of the Operate Sys-
tem. The privileges are assigned to different user clearances, also by the administrator.

Note: This field is common to all the property pages. A change will affect all types of ob-
jects.

 Page tabs:
Select the properties page here. If any graphic objects are currently selected, the tabs for pages
that do not apply to any of the selected objects are grayed. You can click on any of the tabs to
change to the appropriate page, even those that are grayed.

 Register:
Select the register whose value you want to display. If you do not select a register, you will not be
able to draw dials.

 Up and down / Left and right:
Choose the orientation of the dial. Up and down dials move vertically, left and right dials move
horizontally.

 Value:
Select which value to use.

Current:
Select this option for registers with a size of one value, or to use the value with the greatest index
of a register with a size of more than one value. This corresponds to the last value added by an
SCL program.

Highest:
Select this option to use the highest of all the register’s values.

Lowest:
Select this option to use the lowest of all the register’s values.

 Top:
Enter the register value for which the dial should appear all the way at the top.

If you specify a top value that is less than the bottom value, the drawing properties for the top and
bottom will be reversed (i.e. the properties for the top will be used for the bottom and vice versa).

 Bottom:
Enter the register value for which the dial should appear all the way at the bottom.

If you specify a bottom value that is greater than the top value, the drawing properties for the top
and bottom will be reversed (i.e. the properties for the top will be used for the bottom and vice
versa).

 State pop-up menu:
Use this pop-up menu to view and change the properties for the different indicator states and
parts of the dial. All dials will be displayed in the selected state. If you select “Blink state”, dials
that show the value of alarm registers will flash.

 State enable:
Check this checkbox to enable the selected part of the dial for the selected state. If you leave this
box blank, the part of the dial will be invisible when in this state.

 Line width:
For the top and bottom parts, select the line width for the outline of the rectangle.

For the marker, select the width of the marker line. This field is not available if you are using an
image as marker instead of a line.

 Page 112

U.P.M.A.C.S. Developer’s Manual Database Objects

 Line style:
For the top and bottom parts, select the line style (solid, dashed, dotted, etc.) for the outline of the
rectangle.

For the marker, select the style of the marker line. This field is not available if you are using an
image as marker instead of a line.

 Line colour:
For the top and bottom parts, select the colour for the outline of the rectangle.

For the marker, select the colour of the marker line. This field is not available if you are using an
image as marker instead of a line.

 Fill style/pattern:
This field is only present for the top and bottom parts. Select the fill style or fill pattern for the rec-
tangle.

 Background fill colour:
This field is only present for the top and bottom parts. If you selected a two-colour pattern as the
fill style, select the background colour for the pattern here.

 Foreground fill colour:
This field is only present for the top and bottom parts. If you selected “Solid colour” as the fill
style, select the fill colour here. If you selected a two-colour pattern as the fill style, select the
foreground colour for the pattern here.

 Use image:
This field is only present for the marker. Check this box to use an image for the marker rather
than a line.

 Image name:
This field is only present for the marker. Select the image for the marker. The image will appear in
the image preview field. This field is not available if you are using a line as marker rather than an
image.

 Image preview:
This field is only present for the marker. This field shows the image you have selected in the im-
age name field.

Graphs

Graphs display all the values of an analog register as a bar or line graph. The first value is always
shown on the left, and the last value on the right.

Contrary to other indicators, graphs do not have different states. Graphs always look the same
regardless of whether the register is in the ON or OFF state, or whether it is an alarm or not. If the
register is in the masked or error state, graphs are always invisible.

 Drawing graphs:
To draw a graph, proceed as follows:

1. Make sure that no graphic objects are selected by clicking on some empty space in the
editor window.

2. Go to the Graph Properties page in the Drawing Properties window and set the properties
of the new graph. Use the state pop-up menu to set the properties for the different states.
The tab for the Graph Properties page is marked with the same icon as the “Graphs”
Drawing Tool button (see picture below). Make sure to select a register, or you will not be
able to select the “Graphs” Drawing Tool.

 Page 113

U.P.M.A.C.S. Developer’s Manual Database Objects

3. Choose “Graphs” from the “Draw” menu, or press the “Graphs” Drawing Tool button:

The “Graphs” Drawing Tool button

You will not be able to select this tool if you failed to select a register in step 2. If you
want to draw more than one graph, choose “Lock Tool” from the “Draw” menu, or press
the Drawing Tool button a second time.

4. Draw the graph by clicking and dragging on the screen.

The Graph Properties Page

line width

fill style/ pattern

image preview

line style

line colour

foreground fill colour

background fill colour

image name

register

page tabs

required user level

If no graphic object is currently selected, the Graph Properties page shows the current drawing
properties for graphs. If any graphic objects are selected, the page shows all the properties appli-
cable to the selected graphs. Properties that are not applicable to any objects (such as line prop-
erties for disabled states) appear grayed. If a particular property is different for two selected
graphs (e.g. two graphs with different top values are selected), that property will be shown in an
indeterminate state.

 Required user level:
Select the minimum user clearance or the user privilege for the object. If you select a clearance
or privilege other than Show always, the object will only be visible if a user with the specified
clearance or privilege has signed on.

The user clearance of each registered user is defined by the administrator of the Operate Sys-
tem. The privileges are assigned to different user clearances, also by the administrator.

Note: This field is common to all the property pages. A change will affect all types of ob-
jects.

 Page 114

U.P.M.A.C.S. Developer’s Manual Database Objects

 Page tabs:
Select the properties page here. If any graphic objects are currently selected, the tabs for pages
that do not apply to any of the selected objects are grayed. You can click on any of the tabs to
change to the appropriate page, even those that are grayed.

 Register:
Select the register whose values you want to display. If you do not select a register, you will not
be able to draw graphs.

 Graph type:
Select the type of graph you want to use.

 Top:
Enter the register value for which the graph should touch the top of the rectangle.

 Bottom:
Enter the register value for which the graph should touch the bottom of the rectangle.

 Line width:
Select the line width for line graphs, and for the outline of the bars of bar graphs.

 Line style:
Select the line style (solid, dashed, dotted, etc.) for line graphs, and for the outline of the bars of
bar graphs.

 Line colour:
Select the colour for line graphs, and for the outline of the bars of bar graphs.

 Fill style/pattern:
Select the fill style or fill pattern for filled line graphs and bar graphs.

 Background fill colour:
If you selected a two-colour pattern as the fill style, select the background colour for the pattern
here.

 Foreground fill colour:
If you selected “Solid colour” as the fill style, select the fill colour here. If you selected a two-
colour pattern as the fill style, select the foreground colour for the pattern here.

 Image name:
Select the image to be used as markers for graphs that use markers for the points. The image will
appear in the image preview field.

 Image preview:
This field shows the image you have selected in the image name field.

X-Y Position Markers

X-Y position markers are images that change their position within a bounding rectangle by using
the value of two analog registers, one for the X coordinate, and one for the Y coordinate.

X-Y position markers can either display a static image, or a different image depending on the
ON/OFF state of a register, similar to an image bistate indicator. You can also display a text label
near the marker. The text label can contain the value of a string register, if desired.

X-Y position markers support leaders. The leaders are two lines, one horizontal, and one vetical,
that go through the marker and extend to the edge of the bounding box to give a cross-hairs ef-
fect. The vertical line is called the X leader, because it has the same X coordinate as the marker.
The horizontal line is called the Y leader, because it has the same Y coordinate. You can enable
and disable the X and Y leader separately.

 Page 115

U.P.M.A.C.S. Developer’s Manual Database Objects

X-Y position markers also support a “trace”. If the X and Y coordinate registers have a size of
more than one value, you can display a curve that goes through all the points described by all the
values.

X leader

marker

Y leader

label

trace

 Drawing X-Y position markers:
To draw an X-Y position marker, proceed as follows:

1. Make sure that no graphic objects are selected by clicking on some empty space in the
editor window.

2. Go to the X-Y Position Marker Properties page in the Drawing Properties window and set
the properties of the new marker. Use the state pop-up menu to set the properties for the
different states. The tab for the X-Y position marker Properties page is marked with the
same icon as the “X-Y Position Markers” Drawing Tool button (see picture below). Make
sure to select a register, or you will not be able to select the “Markers” Drawing Tool.

3. Choose “X-Y Position Markers” from the “Draw” menu, or press the “Markers” Drawing
Tool button:

The “Markers” Drawing Tool button

You will not be able to select this tool if you failed to select a register for the X or Y coor-
dinate in step 2. If you want to draw more than one marker, choose “Lock Tool” from the
“Draw” menu, or press the Drawing Tool button a second time.

4. Draw the marker by clicking and dragging on the screen.

5. Move the label, if any to the desired position by clicking on it and dragging it, or resize it
by dragging the label’s handles. The label’s handles are only visible, and you can only
move the label, when the “Reshape” tool is selected.

 Page 116

U.P.M.A.C.S. Developer’s Manual Database Objects

The X-Y Position Marker Properties Page

image preview

image name

state pop-up menu

register

page tabs

required user level

X coordinate
register

Y coordinate
register

If no graphic object is currently selected, the X-Y Position Marker Properties page shows the cur-
rent drawing properties for X-Y position markers. If any graphic objects are selected, the page
shows all the properties applicable to the selected X-Y position markers. Properties that are not
applicable to any objects (such as ON state markers properties for static markers) appear grayed.
If a particular property is different for two selected X-Y position markers (e.g. two X-Y position
markers with different top values are selected), that property will be shown in an indeterminate
state.

 Required user level:
Select the minimum user clearance or the user privilege for the object. If you select a clearance
or privilege other than Show always, the object will only be visible if a user with the specified
clearance or privilege has signed on.

The user clearance of each registered user is defined by the administrator of the Operate Sys-
tem. The privileges are assigned to different user clearances, also by the administrator.

Note: This field is common to all the property pages. A change will affect all types of ob-
jects.

 Page tabs:
Select the properties page here. If any graphic objects are currently selected, the tabs for pages
that do not apply to any of the selected objects are grayed. You can click on any of the tabs to
change to the appropriate page, even those that are grayed.

 Register:
Select the register on whose state the marker image depends. Select <Static marker> to show a
static image that does not depend on the state of any register.

 X coordinate register:
Select the register whose value should determine the X (left-right) position of the marker. If you
do not select a register, you will not be able to draw X-Y position markers.

 Page 117

U.P.M.A.C.S. Developer’s Manual Database Objects

 Value:
Select which value of the X coordinate register to use.

Current:
Select this option for registers with a size of one value, or to use the value with the greatest index
of a register with a size of more than one value. This corresponds to the last value added by an
SCL program.

Highest:
Select this option to use the highest of all the register’s values.

Lowest:
Select this option to use the lowest of all the register’s values.

 Left:
Enter the register value for which the marker should appear at the left edge of the bounding box.

 Right:
Enter the register value for which the marker should appear at the right edge of the bounding box.

 Y coordinate register:
Select the register whose value should determine the Y (up-down) position of the marker. If you
do not select a register, you will not be able to draw X-Y position markers.

 Value:
Select which value of the Y coordinate register to use.

Current:
Select this option for registers with a size of one value, or to use the value with the greatest index
of a register with a size of more than one value. This corresponds to the last value added by an
SCL program.

Highest:
Select this option to use the highest of all the register’s values.

Lowest:
Select this option to use the lowest of all the register’s values.

 Top:
Enter the register value for which the marker should appear at the top edge of the bounding box.

 Bottom:
Enter the register value for which the marker should appear at the bottom edge of the bounding
box.

 State pop-up menu:
Use this pop-up menu to view and change the properties for the different indicator states. All
markers (except static markers) will be displayed in the selected state. If you select “Blink state”,
markers that show the state of alarm registers will flash.

Static markers only have one state, called “<Static marker>“. Selecting <Static marker> does not
affect the way non-static markers are shown.

 Image name:
Select the image to display here. The image will appear in the image preview field.

 Image preview:
This field shows the image you have selected in the image name field.

 The “Label and lines…” button:
Press this button to edit the properties for the label, the X and Y leaders, and the trace. See X-Y
Position Marker Labels and Lines below for a description of the Edit Label and Lines dialog.

 Page 118

U.P.M.A.C.S. Developer’s Manual Database Objects

X-Y Position Marker Labels and Lines

X-Y position markers can display a text label near the marker. The text label can contain the
value of a string register, if desired.

X-Y position markers support leaders. The leaders are two lines, one horizontal, and one vertical,
that go through the marker and extend to the edge of the bounding box to give a cross-hairs ef-
fect. The vertical line is called the X leader, because it has the same X coordinate as the marker.
The horizontal line is called the Y leader, because it has the same Y coordinate. You can enable
and disable the X and Y leader separately.

X-Y position markers also support a “trace”. If the X and Y coordinate registers have a size of
more than one value, you can display a curve that goes through all the points described by all the
values.

To edit the settings for the label, the leaders, and the trace, press the “Label and lines…” button
in the X-Y Position Marker Properties page.

The Edit Label and Lines Dialog

italic style

bold style

label colour

label size

line enable

line width

line colour

line style

label font

label text

state pop-up menu

 State pop-up menu:
Use this pop-up menu to view and change the properties for the different indicator states. All
markers (except static markers) will be displayed in the selected state. If you select “Blink state”,
markers that show the state of alarm registers will flash.

Static markers only have one state, called “<Static marker>“. Selecting <Static marker> does not
affect the way non-static markers are shown.

 Label text:
Enter the taxt that should be shown in the label here. The text is converted as described under
Text Used in Indicators using the register whose state the marker reflects. You can choose to
replace % symbols in the label text with the value of a string register rather than with the register
name.

If you do not want a label, leave this field blank.

 Label font:
Select the font for the label. U.P.M.A.C.S. only supports a number of predefined fonts. You can-
not add fonts to this menu.

Bold style/italic style:

 Page 119

U.P.M.A.C.S. Developer’s Manual Database Objects

Check these boxes for bold and/or italic label text.

 Label size:
Select the text size (pitch) of the label here.

 Label colour:
Select the colour for the label text here.

 Alignment:
Select the alignment (justification) for the label text here.

 X Leader:
Shows the settings for the X (vertical) leader.

 Y Leader:
Shows the settings for the Y (horizontal) leader.

 Trace:
Shows the settings for the trace.

 Line enable:
Check this checkbox to enable the leader or trace for the selected state.

 Line width:
Select the line width for the leader or trace.

 Line style:
Select the line style (solid, dashed, dotted, etc.) for the leader or trace.

 Line colour:
Select the colour for the leader or trace.

 The “Apply” button:
Press this button to apply the settings to the currently selected X-Y position markers.

Controls

Controls are buttons the user can press to initiate certain actions. There are three types of con-
trols:

 SCL program controls:
SCL program controls execute an SCL program when pressed. The button stays pressed until the
program has finished executing, so that the user cannot execute the same program twice using
the same button. Use this type of control to allow the user to control equipment.

SCL program controls are invisible to users who do not have Control privileges, unless the pro-
gram they execute allows execution without signing on. See SCL Programs for details.

 Screen controls:
Screen controls take the user to a screen. If there is already a window showing the screen, that
window is brought to the foreground, otherwise a new window containing the screen is opened. If
the screen is configured as a dialog, a dialog containing the screen is shown. Use this type of
control to allow the user to navigate the station.

 Network screen controls:
Network screen controls show a screen on a remote station. If U.P.M.A.C.S. is not connected to
the station, an error message appears. Use this type of control to implement navigation buttons
on network maps.

A control can have an optional caption. The caption is centered on the button, and is displayed
using the default font and size specified for buttons in the Display control panel. The button cap-
tion is never obscured by other graphic objects, even if they are in front of the button. This allows
you to place an object or an indicator between the button and its caption.

 Page 120

U.P.M.A.C.S. Developer’s Manual Database Objects

Buttons are usually the system button colour, specified in the Display control panel. For very large
buttons, this can be undesirable, so U.P.M.A.C.S. allows buttons that are the same colour as the
background colour of the screen. Use this feature sparingly, as buttons that have the same colour
as the screen are difficult to see.

 Drawing controls:
To draw a control, proceed as follows:

1. Make sure that no graphic objects are selected by clicking on some empty space in the
editor window.

2. Go to the Control Properties page in the Drawing Properties window and set the proper-
ties of the new control. The tab for the Control Properties page is marked with the same
icon as the “Control” Drawing Tool button (see picture below).

3. If you specify a program, the new control will be an SCL program control. If you specify a
screen, the new control will be a Screen control. If you specify a network screen, the new
control will be Network screen control. Make sure to specify one of the three, or you will
not be able to select the “Controls” Drawing Tool.

4. Choose “Controls” from the “Draw” menu, or press the “Controls” Drawing Tool button:

The “Controls” Drawing Tool button

You will not be able to select this tool if you failed to specify a program, screen, or net-
work screen in step 2. If you want to draw more than one control, choose “Lock Tool”
from the “Draw” menu, or press the Drawing Tool button a second time.

5. Draw the control by clicking and dragging on the screen.

 Page 121

U.P.M.A.C.S. Developer’s Manual Database Objects

The Control Properties Page

page tabs

required user level

If no graphic object is currently selected, the Control Properties page shows the current drawing
properties for controls. If any graphic objects are selected, the page shows all the properties ap-
plicable to the selected controls. If no controls are among the selected objects, all properties ap-
pear grayed. If a particular property is different for two selected controls (e.g. two controls with
different captions are selected), that property will be shown in an indeterminate state.

 Required user level:
Select the minimum user clearance or the user privilege for the object. If you select a clearance
or privilege other than Show always, the object will only be visible if a user with the specified
clearance or privilege has signed on.

The user clearance of each registered user is defined by the administrator of the Operate Sys-
tem. The privileges are assigned to different user clearances, also by the administrator.

SCL program controls are always invisible to users who do not have Control privileges, unless the
program they execute allow execution without signing on. There is no need to specify “Control
privileges” for an SCL program control to prevent unauthorized users from executing SCL pro-
grams.

Note: This field is common to all the property pages. A change will affect all types of ob-
jects.

 Page tabs:
Select the properties page here. If any graphic objects are currently selected, the tabs for pages
that do not apply to any of the selected objects are grayed. You can click on any of the tabs to
change to the appropriate page, even those that are grayed.

 Program:
For SCL program controls, select the program here. For Screen and Network screen controls, this
field is blank.

 Page 122

U.P.M.A.C.S. Developer’s Manual Database Objects

If you select a program here, the “Screen” and “Network screen” fields are cleared. To turn a dif-
ferent type of control into an SCL program control, select it and then select a program here. Press
the “Arguments…” buttons to specify arguments for the program. See Specifying Arguments for
SCL Programs for a description of the Edit Program Arguments dialog.

 Screen:
For Screen controls, select the screen here. For SCL program and Network screen controls, this
field is blank.

If you select a screen here, the “Program” and “Network screen” fields are cleared. To turn a dif-
ferent type of control into a Screen control, select it and then select a screen here.

 Network screen:
For Network screen controls, this field shows the station name and screen tag. The field has two
lines: the station name is shown on the first line, the screen tag below it. For SCL program and
Screen controls, this field is blank.

Press The “Set…” button set the station name and screen tag. If you press this button, the “Pro-
gram” and “Screen” fields are cleared. To turn a different type of control into a Network screen
control, select it and then press this button.

The Set Network Screen dialog has two text entry fields:

Station name:
Enter the name that the station will be connected as. This name must be the same as the name
entered in the “Connect as:” field of the Connect To dialog of the U.P.M.A.C.S. Operate system.

Screen tag:
Enter the tag of the screen this button should activate.

 Caption:
Enter the caption of the button. The caption can have multiple lines.

 Screen colour:
Check this box if you want the button to be the same colour as the screen. This will make the but-
ton harder to see, but can avoid a cluttered appearance if you use very large buttons.

Labels

Labels are text objects. They never change appearance, but the text can contain placeholders for
the name of a register. You can use labels to label indicators for user-definable registers. If the
user changes the name of the register, the label will change accordingly.

The text of the label is converted in the same manner as text used in indicators, that is, any per-
centage signs appearing in the text will be replaced by the register name.

 Drawing labels:
To draw a label, proceed as follows:

1. Make sure that no graphic objects are selected by clicking on some empty space in the
editor window.

 Page 123

U.P.M.A.C.S. Developer’s Manual Database Objects

2. Go to the Label Properties page in the Drawing Properties window and set the properties
of the new label. The tab for the Label Properties page is marked with the same icon as
the “Labels” Drawing Tool button (see picture below). Make sure to select a register, or
you will not be able to select the “Labels” Drawing Tool.

3. Choose “Labels” from the “Draw” menu, or press the “Labels” Drawing Tool button:

The “Labels” Drawing Tool button

You will not be able to select this tool if you failed to select a register in step 2. If you
want to draw more than one label, choose “Lock Tool” from the “Draw” menu, or press
the Drawing Tool button a second time.

4. Draw the label by clicking and dragging on the screen.

The Label Properties Page

text font

bold style

text size

italic style

text colour

text alignment

register

page tabs

required user level

If no graphic object is currently selected, the Label Properties page shows the current drawing
properties for labels. If any graphic objects are selected, the page shows all the properties appli-
cable to the selected labels. If no labels are among the selected objects, all properties appear
grayed. If a particular property is different for two selected labels (e.g. two labels with different
fonts are selected), that property will be shown in an indeterminate state.

 Required user level:
Select the minimum user clearance or the user privilege for the object. If you select a clearance
or privilege other than Show always, the object will only be visible if a user with the specified
clearance or privilege has signed on.

The user clearance of each registered user is defined by the administrator of the Operate Sys-
tem. The privileges are assigned to different user clearances, also by the administrator.

 Page 124

U.P.M.A.C.S. Developer’s Manual Database Objects

Note: This field is common to all the property pages. A change will affect all types of ob-
jects.

 Page tabs:
Select the properties page here. If any graphic objects are currently selected, the tabs for pages
that do not apply to any of the selected objects are grayed. You can click on any of the tabs to
change to the appropriate page, even those that are grayed.

 Register:
Select the register whose name you wish to use in the text. If you do not select a register, you will
not be able to draw labels.

 Text:
Enter the text of the label here. The text can be multiple lines. The text is converted as described
under Text Used in Indicators.

 Text font:
Select the font for text. U.P.M.A.C.S. only supports a number of predefined fonts. You cannot add
fonts to this menu.

 Bold style/italic style:
Check these boxes for bold and/or italic text.

 Text size:
Select the text size (pitch) here.

 Text colour:
Press this button to select the text colour.

 Text alignment:
Select the alignment (justification) for text here.

SABus Requests

You can add objects to you station file that enable third-party systems to poll U.P.M.A.C.S. via
one or more of the serial ports of the computer, called uplink ports. The baud rate, character for-
mat, flow control, COM ports, etc. used for those ports are configured from within the Operate
System. All you have to do to enable other systems to poll U.P.M.A.C.S. is provide a set of
SABus requests, (queries and commands) in the station file.

The protocol used to poll U.P.M.A.C.S. is based on Scientific Atlanta’s SABus protocol. You do
not specify the complete protocol in the station file, but only the opcodes and parameters, and the
data that will be returned for each request.

The exact serial protocol is described in Appendix D: Uplink Port Protocol on page 182, together
with the two built-in commands used to sign on and off, and to acknowledge alarms.

Each SABus request object is identified by a single byte opcode (short for operation code) and a
set of fixed parameters. When a packet of data is received on an uplink port, the opcode together
with the fixed parameters is used to determine which SABus request object the packet refers to.
The fixed parameters must follow the opcode immediately and without separators in the request
packet.

The fixed parameters are used mostly for queries. A query is a request for which U.P.M.A.C.S.
constructs the response for you from the values of registers you specify. Queries cannot decode
any parameters that the request contains: you must create a separate query object for each pos-
sible set of parameters. Each of these query objects will have different fixed parameters, and use
different registers to construct the response.

 Page 125

U.P.M.A.C.S. Developer’s Manual Database Objects

Example:

Your system talks to four up converters, and you want to provide a way to ask for the frequency of an up
converter via an uplink port. You want your request to use the opcode “F” (you can use any opcode other
than the two reserved opcodes “U” and “A”), followed by the converter number.

You must create four separate SABus queries, one for each up converter. Each request will have the same
opcode “F”, but a different fixed parameter, either “1”, “2” , “3” , or “4” . Each query will use the register that
contains the frequency of the correct converter to construct the response.

When a request with opcode “F” is received on an uplink port, U.P.M.A.C.S. will check the first parameter to
determine which of the four queries to execute, and then construct the response accordingly.

You can also specify fixed parameters for commands, although commands use an SCL program
to evaluate the data and can decode parameters on the fly. You must use fixed parameters for a
command if the command has the same opcode as a query, so U.P.M.A.C.S. can distinguish be-
tween them.

You must be careful to choose your fixed parameters so that there can never be any doubt about
which SABus request object should be used for a particular packet of data. Also keep in mind that
since the parameters are not separated by special separators, U.P.M.A.C.S. might not be able to
tell where one parameter ends and the next begins. It is, for example, not possible to tell the dif-
ference between the parameter “A” followed by the parameter “BC”, and the parameter “AB” fol-
lowed by the parameter “C”. Both simply look like “ABC” in the request packet. Similarly, if the
opcode is followed by the string “10”, it is not possible for U.P.M.A.C.S. to tell whether this is a
single parameter “10”, or a parameter “1” followed by a parameter “0”. You can make sure that
parameters are properly parsed by using the same width for corresponding parameters in all que-
ries with the same opcode (e.g. “05” and “12”), or by using separation characters (e.g. “,3” and
“,7”). The second method will not work on the last parameter, as there is not way to specify that a
parameter should extend to the end of the data. If the opcode and fixed parameters of more than
one request fit an incoming data packet, U.P.M.A.C.S. will pick one at random, and unexpected
behaviour will result.

If a data packet is received on an SABus port, and no request with the corresponding opcode has
the right set of parameters, a “Bad Parameter” error packet will be returned to the remote system.
The packet will include the number of the parameter, i.e. whether the 1st, 2nd, or 3rd parameter
could not be matched. You should therefore never lump several parameters together into a single
fixed parameter, but specify them as separate fixed parameters.

SABus Queries

Queries are SABus requests for which U.P.M.A.C.S. constructs a response for you from a num-
ber of registers you specify. Queries cannot have any parameters beyond their fixed parameters.
If you need different data to be returned for two different sets of queries, you must create two
separate queries.

The response of a query is constructed from response data objects you specify.

 Page 126

U.P.M.A.C.S. Developer’s Manual Database Objects

The New SABus Query Dialog

 Tag:
Enter the tag by which the query is identified. Each SABus request, whether query or command,
must have a unique tag.

 Name:
Enter the name of the query. Leave this field blank if you want to use the tag as name.

 Opcode:
Enter the opcode of the query. The opcode must be a single character.

The opcode of SABus requests does not have to be unique. However, you must make sure that
the opcode together with the fixed parameters uniquely identify the request.

 Fixed parameters:
Lists all the fixed parameters. Use the buttons to create, delete, or edit the parameters. Use the
“Duplicate…” button to duplicate the selected parameter.

The list shows the parameters in the order they must appear in the request packet. You can
change the order of the parameters by grabbing them with the mouse and dragging them to a
new position.

The fixed parameters are fixed strings, not regular expressions. They must appear in the packet
exactly as shown in this list, without any separation characters. You must make sure that the
fixed parameters together with the opcode uniquely identify the request.

 Response data:
Lists a brief description of all the response data objects. Use the buttons to create, delete, or edit
the data. Use the “Duplicate…” button to duplicate the selected data object.

Each response data object will take the state or value of a register and format it according to your
specifications. The resulting data strings will be concatenated to give the full response data string,
which is sent as the data in the response packet. The response data strings will be assembled in
the order shown in the list. You can change the order of the data objects by grabbing them with
the mouse and dragging them to a new position.

See Response Data Objects on page 128 for details.

 Page 127

U.P.M.A.C.S. Developer’s Manual Database Objects

Response Data Objects

U.P.M.A.C.S. uses response data objects to assemble the response to SABus queries. Each data
object takes information from one or more registers and encodes it according to your specifica-
tions. The resulting data strings are then concatenated to form the full response data. The full
data is wrapped in a response packet together with the query’s opcode, and sent back to the
equipment. See Appendix D: Uplink Port Protocol on page 182 for a description of the response
packet format.

You create response data objects from within the New SABus Query dialog. When you create a
new data object, you will be asked to select the type of the new data object.

There are six types of data objects that encode the value or state of one or more registers:

 Register state response data

 Digital register value response data (number)

 Digital register value response data (strings)

 Analog register value response data

 String register value response data

 Register status bits response data

In addition, there are two types of data objects that do not take their values directly from registers:

 Processor response data

 Fixed data string response data

The different types of response data are described in the following chapters.

Register State Response Data

Register state response data objects use one of a number of fixed data strings, depending on the
ON/OFF, error, and masked state of a register. The register can be any type.

Use register state response data objects to provide information about settings and alarms that are
stored in a register’s ON/OFF state, and that you want to represent using one or more bytes
within the response. If you want to use a single bit to represent the state, use a register status bits
response data object instead.

The data strings that are sent can be any sequence of printable characters (ASCII $20-$7E).
Typically, you would use strings like “1” and “0”, “on” and “off”, “aut” and “man”, “FLT” and “OK”,
etc. It is usually easiest for the remote system to decode the data if you use strings of equal
length, but you can use strings of different lengths if you want. You should also specify strings to
be sent when the register is in its error or masked state.

You can also use this type of response to send the error and masked state of a register. For ex-
ample, you can send information about the masked state of a register by specifying the string
“Msk” (or something similar) for the masked state, and “Unm” for the ON, OFF, and error states.
Similarly, you could specify the string “E” for the error state, and “O” for the ON, OFF, and
masked states to let a remote system query the error state of a register.

 Page 128

U.P.M.A.C.S. Developer’s Manual Database Objects

The New Register State Response Data Dialog

 Register:
Select the register whose state you want to use

 Off state:
Enter the data string to use if the register is in the OFF state.

 On state:
Enter the data string to use if the register is in the ON state.

 Masked state:
Enter the data string to use if the register is masked. If you do not specify a string for the masked
state, an empty string will be used if the register is masked.

 Error state:
Enter the data string to use if the register is in its error state. If you do not specify a string for the
error state, an empty string will be used if the register is in the error state.

Digital Register Value Response Data (Number)

This type of response data object simply formats the value of a digital register as a binary, octal,
decimal, or hexadecimal number, written out in ASCII characters. Use this type of object with digi-
tal registers whose value represents a number, like a channel or satellite number.

The New Digital Register Value Response Data Dialog

 Register:
Select the register whose value you want to use

 Binary/Octal/Decimal/Hexadecimal number:
Select the base for the representation of the number

 Use fixed width:
Check this box to use a fixed width. The number will be padded to the left with 0’s to fill the re-
quired width. If the number does not fit into the width specified, all 9’s will be used (e.g. any num-
ber 100 and above encoded with a fixed width of 2 will give “99”).

 Page 129

U.P.M.A.C.S. Developer’s Manual Database Objects

Width:
Enter the number of bytes to use as the fixed width.

 Masked state:
Enter the data string to use if the register is masked. If you do not specify a string for the masked
state, an empty string will be used if the register is masked.

 Error state:
Enter the data string to use if the register is in its error state. If you do not specify a string for the
error state, an empty string will be used if the register is in the error state.

Digital Register Value Response Data (Strings)

This type of response data objects uses a different data string for each register value you specify.
Use this type of object for digital registers whose value represents different settings or conditions
rather than numerical values. You can then specify a different string for each of the relevant val-
ues.

It is usually easiest for the remote system to decode the data if all the strings you specify have
the same length, but you can use strings of different lengths if you want.

The New Digital Register Value Response Data Dialog

 Register:
Select the register whose value you want to use

 Values:
Shows a list of values and the strings that will be used for them. Use the buttons to create, delete,
duplicate, or edit strings.

 Other values:
Enter the data string to use for all values that are not in the “Values” list. If you do not specify a
string, an empty string will be used if the value is not in the list.

 Masked state:
Enter the data string to use if the register is masked. If you do not specify a string for the masked
state, an empty string will be used if the register is masked.

 Error state:
Enter the data string to use if the register is in its error state. If you do not specify a string for the
error state, an empty string will be used if the register is in the error state.

 Page 130

U.P.M.A.C.S. Developer’s Manual Database Objects

Analog Register Value Response Data

Analog resister value response data objects format the value of an analog register as number,
written out in ASCII characters. You can provide a factor and an offset to be applied to the value
before formatting it. The number written to the data string is calculated from the value of the regis-
ter as follows:

number = value · factor + offset

To use the value unaltered, specify a factor of 1 and an offset of 0.

If the register has a size of more than one value, you can either format a single value, or all of the
values one after the other, separated by a fixed separator string.

The New Analog Register Value Response Data Dialog

 Register:
Select the register whose value you want to use

 Value:
Select which value to use.

Current:
Select this option for registers with a size of one value, or to use the value with the greatest index
of a register with a size of more than one value. This corresponds to the last value added by an
SCL program.

Highest:
Select this option to use the highest of all the register’s values.

Lowest:
Select this option to use the lowest of all the register’s values.

All values:
Select this option to write out all of the register’s values, one after the other. The values are sepa-
rated by the separator, described below.

 Factor:
Enter the factor with which the value of the register is to be multiplied before writing it to the data
string. The factor is applied before the offset.

 Page 131

U.P.M.A.C.S. Developer’s Manual Database Objects

 Offset:
Enter the offset that is to be added to the value of the register before writing it to the data string.
The offset is applied after the factor.

 Signed/Unsigned value:
Choose whether you want to include a plus or minus sign before the number. If you choose “Un-
signed value”, all numbers less than 0 will be written as 0. If you choose “Signed value”, the sign
will be included for positive as well as negative numbers. The value 0 will also be prepended with
a plus sign.

 Decimals:
Enter the number of digits to be written after the decimal point. The number will be rounded to the
specified number of decimals, or padded with zeros to the right, as necessary. To use an implied
decimal point, enter 0 for the decimals and specify a factor that will scale the number to remove
the correct number of decimals. E.g., to imply 3 decimal digits, use a factor of 1000.

 Use fixed width:
Check this box to use a fixed width. The number will be padded to the left with 0’s to fill the re-
quired width. If the number does not fit into the width specified, all 9’s will be used (e.g. any num-
ber 100 and above encoded with a fixed width of 4 and one decimal will give “99.9”).

Width:
Enter the number of bytes to use as the fixed width. The width does not include the plus or minus
sign if you selected the “Signed number” option. It does, however, include the decimal point if you
specified a number of decimals other than 0. Consequently, “-05.56” is considered to have length
5: two digits, a decimal point, and two decimal digits. The decimal point is counted, but the minus
sign is not.

Masked state:
Enter the data string to use if the register is masked. If you do not specify a string for the masked
state, an empty string will be used if the register is masked.

Error state:
Enter the data string to use if the register is in its error state. If you do not specify a string for the
error state, an empty string will be used if the register is in the error state.

Separator between values:
Enter the separator that will be placed between the different values of a register that has a size of
more than one value. This field is only available if you selected “All values” in the “Value” field.

String Register Value Response Data

String register value response data objects use the value of a string register as the data. Since
the SABus protocol does not allow non-printable characters (ASCII $00-$1F and $7F-$FF), any
non-printable characters in the register value will be replaced by a padding character you specify.

 Page 132

U.P.M.A.C.S. Developer’s Manual Database Objects

The New String Register Value Response Data Dialog

 Padding:
Enter the padding character here. The padding character is used to replace any non-printable
characters (ASCII $00-$1F and $7F-$FF) and to pad the value to the correct width if you speci-
fied a fixed width.

 Use fixed width:
Check this box to use a fixed width. The string will be padded to the left or right with the padding
character or truncated to fit the width exactly.

Width:
Enter the number of bytes to use as the fixed width.

Left aligned:
Choose this option to left-align the value of the register within the specified width. Any padding
will be placed to the right of the value, or the rightmost characters will be clipped to make the
value fit the width.

Right aligned:
Choose this option to right-align the value of the register within the specified width. Any padding
will be placed to the left of the value, or the leftmost characters will be clipped to make the value
fit the width.

 Masked state:
Enter the data string to use if the register is masked. If you do not specify a string for the masked
state, an empty string will be used if the register is masked.

 Error state:
Enter the data string to use if the register is in its error state. If you do not specify a string for the
error state, an empty string will be used if the register is in the error state.

Register Status Bits Response Data

Register status bit response data let you represent the ON/OFF state of up to six registers in a
single byte. Because the SABus protocol only allows printable characters, only the six least sig-
nificant bits (bits 0-5) of a byte can be used as status bits. Bit 7 is always 0, and bit 6 must be the
complement of bit 5, that is, if bit five is 0, bit 6 must be 1, and vice versa.

 Page 133

U.P.M.A.C.S. Developer’s Manual Database Objects

The New Register Status Bits Response Data Dialog

 Bit 7/6:
You cannot change the behaviour of bits 6 and 7.

 Bit 5/4/3/2/1/0:
Select the register whose state you want this bit to represent. If you do not want to use a register
for this bit, select <always 0> or <always 1>. The bit will then always be set to 0 or 1, respec-
tively.

If you selected a register, you can set the following options:

Set bit on alarm/on:
Choose this option if you want the bit to be set (1) if the register is in the ON state, and cleared
(0) if it is in the OFF state.

Set bit on alarm clear/off:
Choose this option if you want the bit to be cleared (0) if the register is in the ON state, and set
(1) if it is in the OFF state.

Set bit on error state:
Check this box if you want the bit to be set (1) if the register is in its error state. If you leave this
box blank, the bit will be cleared (0) if the register is in the error state.

Set bit if masked:
Check this box if you want the bit to be set (1) if the register is masked. If you leave this box
blank, the bit will be cleared (0) if the register is masked.

 Page 134

U.P.M.A.C.S. Developer’s Manual Database Objects

Processor Response Data

If none of the other types of response data fit your needs, you can use a processor response data
object. The response data section of a processor response data object is constructed within an
SCL program. The program can collect data from various registers and parameters and perform
any necessary calculation or formatting, or other processing. See Programs for Sources and
SABus Response Data in the SCL Language Reference for details.

The New Processor Response Data Dialog

 Program:
Select the program that will provide the data.

 Arguments:
Specify the program arguments. See Specifying Arguments for SCL Programs on page 67 for
more information.

Fixed Data String Response Data

Use fixed data string response data objects to place fixed data, like separators or special mark-
ers, into your response.

The New Fixed Data String Response Data Dialog

 Data string:
Enter the data.

SABus Commands

Commands are SABus Queries that rely completely on an SCL program to do all processing, and
to construct a response. Commands can have variable parameters beyond the fixed parameters:
When a command is received, U.P.M.A.C.S. decodes the additional parameters according to
your specifications and places their values in SCL variables when it launches the command pro-
gram. See Programs for SABus Commands in the SCL Programming Reference for details.

SABus commands will normally fail with the “USR” error message if the remote system on the
SABus is not signed on. If you want a command to be available to systems that are not signed

 Page 135

U.P.M.A.C.S. Developer’s Manual Database Objects

on, you must configure the program it executes to allow execution without signing on. See SCL
Programs on page 58 for details.

SABus commands are primarily designed to implement controls that can be executed via an
SABus request. To provide such a control, simply write an SCL program that performs the control
action and returns an acknowledge or error response, as appropriate. Contrary to the programs
used for control buttons, programs that are used for SABus commands should not require a con-
firmation of the action. Any confirmation should be the responsibility of the system that sent the
command.

Another way of using SABus commands is to provide information to the remote system. This is
usually done using SABus queries, but in certain situations, a query may not be suitable because
it can only take fixed parameters. If you need to have a request with variable parameters that re-
turns information, you can create an SABus command whose SCL program will not perform any
actions, but simply construct an appropriate response and send it. If you intend to use a com-
mand in this way, make sure to configure the program you are going to use to allow execution
without signing on, or the command will be rejected unless the client that sent it is currently
signed on. See SCL Programs on page 58 for details.

The New SABus Command Dialog

 Tag:
Enter the tag by which the command is identified. Each SABus request, whether command or
query, must have a unique tag.

 Name:
Enter the name of the command. Leave this field blank if you want to use the tag as name.

 Opcode:
Enter the opcode of the command. The opcode must be a single character.

The opcode of SABus requests does not have to be unique. However, you must make sure that
the opcode together with the fixed parameters uniquely identify the request.

 Fixed parameters:
Lists all the fixed parameters. Use the buttons to create, delete, or edit the parameters. Use the
“Duplicate…” button to duplicate the selected parameter.

The list shows the parameters in the order they must appear in the request packet. You can
change the order of the parameters by grabbing them with the mouse and dragging them to a
new position.

 Page 136

U.P.M.A.C.S. Developer’s Manual Database Objects

The fixed parameters are fixed strings, not regular expressions. They must appear in the packet
exactly as shown in this list, without any separation characters. You must make sure that the
fixed parameters together with the opcode uniquely identify the request.

 Program:
Select the SCL programs you want to be executed when the command is received. The program
arguments are shown in parentheses after the name of the program, but you only select the pro-
gram from the lists, not the arguments. To change the arguments, use the “Args…” button. See
Specifying Arguments for SCL Programs on page 67 for a description of the Edit Program Argu-
ments dialog.

 Parameters:
Lists all the variable parameters by their variable names. Use the buttons to create, delete, or edit
the parameters. Use the “Duplicate…” button to duplicate the selected parameter.

The variable parameters always appear after the fixed parameters in the request packet. The list
shows the parameters in the order they must appear. You can change the order of the parame-
ters by grabbing them with the mouse and dragging them to a new position.

The variable parameters are not used to distinguish between SABus requests. You must make
sure that the fixed parameters alone, together with the opcode, uniquely identify the request.

See Variable Command Parameters below for details.

Variable Command Parameters

U.P.M.A.C.S. uses parameter decoding objects to decode the data that follows the fixed parame-
ters in a command packet. Each variable parameter consists of an SCL variable name and a
method for extracting the variable’s value from the request packet. If a parameter cannot be de-
coded or is missing, or if there is extra data in the request packet once all parameters have been
decoded, the request is rejected with an appropriate error message that includes the number of
the parameter. The parameters are numbered starting with the fixed parameters, followed by the
variable parameters.

Note: String parameters that do not use a variable are not counted for the purposes of
parameter numbering. See String Parameters below for details.

U.P.M.A.C.S. does not check that you do not use the same variable for two parameters. Make
sure that you use each variable only once, and that you do not use any variables used for pro-
gram arguments for parameters. If you use the same variable for more than one parameter, the
variable will be set to last parameter in the list. If you use a variable that you also used for a pro-
gram argument, the value you assigned in the program argument will be overwritten with the pa-
rameter value.

You cannot use array elements as parameter variables.

String Parameters

String parameters use a regular expression to parse a parameter from the request data. You can
specify a string variable that will be set to the string that matched the expression. If you do not
specify a variable, the parameter will not be skipped when assigning parameter numbers for error
messages. This means that a string parameter that does not use a variable will have the same
parameter number as the parameter that follows it. This is useful for specifying separator charac-
ters and parameter prefixes.

 Page 137

U.P.M.A.C.S. Developer’s Manual Database Objects

The New String Parameter Dialog

 Place data in a variable
Check this box to place the data that matches the pattern into a string variable so you can access
it from within the program.

If you leave this check box blank, the parameter will have the same parameter number as the one
that follows it when returning error messages. Leave this box blank for separators and parameter
prefixes.

String variable name:
Enter the name of the SCL variable that will receive the data.

 Data pattern:
Enter a regular expression that the parameter must fit.

The regular expressions used for string parameters have a special feature. If you use an asterisk
(“*”), plus sign, or range modifier on the last part of the expression, that part will be matched as
often as possible. Thus, the expression “A#*” will match the letter “A” and all decimal digits that
follow. The parts other than the last part behave as in any other regular expression, that is, if you
specify a modifier they will be matched as few times as possible. “.*,” will match all characters up
to the first comma (the smallest possible match), not all characters up to the last comma.

See Appendix A: Regular Expressions on page 171 for details.

Number Parameters

Number parameters read a binary, octal, decimal, or hexadecimal number from the data and
place the result in a numerical variable. You can provide a factor and an offset to be applied to
the number after decoding it. The value written to the variable is calculated from the number read
from the parameter list as follows:

value = number · factor + offset

To use the number unaltered, specify a factor of 1 and an offset of 0.

 Page 138

U.P.M.A.C.S. Developer’s Manual Database Objects

The New Number Parameter Dialog

 Numerical variable name:
Enter the name of the SCL variable that will receive the result.

 Binary/Octal/Decimal/Hexadecimal number:
Select the base in which the number appears in the request packet

 Factor:
Enter the factor with which the number in the request packet is to be multiplied before writing it to
the variable. The factor is applied before the offset.

 Offset:
Enter the offset that is to be added to the number in the request packet before writing it to the
variable. The offset is applied after the factor.

 Signed value:
Choose this option to allow a plus or a minus sign before the number.

 Unsigned value:
Choose this option to disallow plus and minus signs. If you choose this option, the number will
always be positive or zero (unless you specify a negative factor).

 Allow decimals
Check this box to allow a decimal point. To use an implied decimal point, leave this box blank and
specify a factor that will scale the number to have the correct number of decimals. E.g., to imply 3
decimal digits, use a factor of 0.001.

 Use fixed width:
If you check this box, the number (including sign and decimal point) must be exactly the specified
number of characters. Any digits outside this width will be treated as belonging to the next pa-
rameter, and an error will be returned if the number is shorter than the specified width.

Width:
Specify the width to use here.

Boolean Parameters

Boolean parameters set a Boolean variable to true% or false%, depending on which one of two
strings is found in the request data. An error is returned if neither of the two strings is found.

 Page 139

U.P.M.A.C.S. Developer’s Manual Database Objects

The New Boolean Parameter Dialog

 Boolean variable name:
Enter the name of the SCL variable that will be set to true% or false%.

 Set to true% if data is:
Enter the string that will cause the variable to be set to true%. The string you enter here must be
matched exactly; it is not a regular expression.

 Set to false% if data is:
Enter the string that will cause the variable to be set to false%. The string you enter here must be
matched exactly; it is not a regular expression.

Set of Strings Parameters

Set of strings parameters set a numerical variable to different values depending on which of a
number of strings is found in the request data. An error is returned if none of the strings is found.

The New Set Of Strings Parameter Dialog

 Numerical variable name:
Enter the name of the SCL variable that will receive the result.

 Values:
Shows a list of values and the strings that correspond to them. If the string is found, the variable
will be set to the corresponding value. Use the buttons to create, delete, duplicate, or edit strings.

Make sure the strings uniquely identify the value. If you use the same string twice, or if there is a
doubt about which string is present in the request packet, U.P.M.A.C.S. will use the first value
that matches. U.P.M.A.C.S. cannot distinguish strings simply by length. If you have two strings
“R” and “REM”, U.P.M.A.C.S. might interpret the characters “REM” in the response as the value
“R” followed by other parameters.

The strings you enter here must be matched exactly; they are not regular expressions.

 Page 140

U.P.M.A.C.S. Developer’s Manual Database Objects

Bits Parameters

Bits parameters set up to six Boolean variables to true% or false%, depending on the values of
the six least significant bits (bits 0-5) of a single data byte. Because the SABus protocol only al-
lows printable characters, bits 6 and 7 cannot be used to hold data.

If the parameters represent the desired state of six separate settings, only use this type of pa-
rameter if all the states are needed at the same time. If the six bits represent six different settings
that can be changed individually, you should provide a separate command to configure each of
them. Otherwise, if the remote system wants to change only a single one of the settings, it must
determine the current state of the remaining five bits and set them correctly in addition to specify-
ing the changed setting.

You can also use this type of parameter to allow the remote system to specify what equipment to
apply a particular setting to. You can, for example, provide a command that allows the system to
switch one or more transfer switches at the same time. You could then use a bits parameter to
specify which switches to switch. The remaining switches should then remain unaffected.

Even though bits 6 and 7 are not used, they cannot be freely set because the SABus protocol
only allows printable characters (ASCII $20-$7E). U.P.M.A.C.S. will not accept requests that in-
clude non-printable characters in the parameter section of their data packet. The easiest way to
ensure that all resulting characters are printable when setting bits in a byte is to set bit 7 to 0, and
to set bit 6 to the complement of bit 5 (set bit 6 to 1 if bit 5 is 0 and vice versa). You can use an-
other method if you like; U.P.M.A.C.S. does not enforce this exact behaviour, as long as the re-
sulting byte represents a printable character.

The New Bits Parameter Dialog

 Place bit 5/4/3/2/1/0 in a variable:
Check this box to assign a variable to the corresponding bit. If you leave the box blank, the corre-
sponding bit will be ignored. If you want to enforce a bit being 0 or 1, you must place it in a vari-
able and check it in the SCL program.

Boolean variable name:
Enter the name of the SCL variable to use for the bit. The variable will be set to true% if the bit is
set (1), and to false% if it is clear (0). Make sure to use a different variable for each bit.

 Page 141

U.P.M.A.C.S. Developer’s Manual Tools

TOOLS

Testing Serial Ports

The New Serial Port dialog provides functionality for testing the port settings and the devices at-
tached to the port. You can send individual commands to equipment, or you can test the initializa-
tion and polling sequences. To pop up the Test Serial Port dialog, press the “Test…” button.

The Test Serial Port Dialog

 Use specified port:
Select this button if the hardware serial port to which the equipment is connected is the same port
you specified in the New Port dialog.

 Use:
Select this radio button if the hardware serial port to which the equipment is connected is different
than the port you specified in the New Port dialog. Select the hardware port you wish to use from
the list. This is useful if you are developing a station to be used on a different computer, and the
computer you are developing on does not have the required serial port.

 Device:
If you want to test a specific device, select that device here.

 Command:
If you want to test a specific command, select that command here. Specify values for all the com-
mand parameters immediately below. (In the sample dialog, the command has no parameters.)

If you do not specify a value for a particular command parameter (i.e., leave the field blank), a
default value will be used. The default value for bistate parameters is OFF, the default value for
digital and analog parameters is 0, and the default value for string parameters is an empty string.

Show as decimal / Show as hex (not shown):
If the command has any parameters of type digital that don’t have value names, you can select
the way you want to enter the parameter values here. Select “Show as decimal” to enter the val-
ues in decimal, select “Show as hex” to enter the values in hexadecimal.

 Page 142

U.P.M.A.C.S. Developer’s Manual Tools

Show as text / Show as hex (not shown):
If the command has any parameters of type string, you can select the way you want to enter the
parameter values here. See Appendix B: Entering Binary Data on page 179 for details on enter-
ing binary data.

 Command data:
Shows the command data that the command sent. The command data is shown either as text or
as hex values, whichever is selected below the “Response elements” box.

See Appendix B: Entering Binary Data on page 179 for details.

 Response data:
Shows the response data received from the device, if any. The response data is shown either as
text or as hex values, whichever is selected below the “Response elements” box.

If a valid or error response was received, only the response will be shown in this field. Any extra
data will be removed. If a timeout occurs, all data in the data buffer will be shown. Any data that
does not fit into the data buffer size specified in the command will be thrown out.

See Appendix B: Entering Binary Data on page 179 for details.

 Response elements:
Shows the response data broken up into the different response elements in the command’s tem-
plate. Response data is shown in green, error codes are shown in red, and all other data is
shown in black.

The response data is shown either as text or as hex values, whichever is selected below the “Re-
sponse elements” box. See Appendix B: Entering Binary Data on page 179 for details.

 Show as text, Show as hex:
Select the way you want the command and response data to be displayed.

See Appendix B: Entering Binary Data on page 179 for details.

 The message field:
At the bottom of the dialog is a space for messages. A message saying whether a valid response
was received or not will appear here when a command has been sent.

 The “Send” button:
Press this button to send the selected command to the device.

 The “Init Device” button:
Press this button to test the first-time initialization sequence of the selected device. The initializa-
tion sequence will be sent exactly as it would be by the Operate System when the port is first
opened. This button is only avaliable if the device has a first-time or common initialization se-
quence.

 The “Reinit Device” button:
Press this button to test the reinitialization sequence of the selected device. The initialization se-
quence will be sent exactly as it would be by the Operate System when the device timed out. See
This button is only avaliable if the device has a reinitialization or common initialization sequence.

 The “Init Port” button:
Press this button to test the first-time initialization sequence of all devices attached to the port.
The initialization sequences will be sent exactly as they would be by the Operate System when
the port is first opened. This button is only avaliable if at least one device device has a first-time
or common initialization sequence.

 The “Poll Port” button:
Press this button to test the polling sequence of the port. The sequence will only be sent once,
and not repeated.

 The “Close” button:
Press this button to close the dialog.

 Page 143

U.P.M.A.C.S. Developer’s Manual Tools

Device Driver Libraries

The U.P.M.A.C.S. Development System supports libraries of predefined device drivers. You can
use driver libraries provided by UPMACS Communications, inc., or you can create your own li-
braries.

A device driver library is very similar to a station file, except that it contains only device drivers.
You can import the device drivers into a station.

Creating and Editing Device Driver Libraries

To create a device driver library, choose “New…” from the file menu. This will create a new sta-
tion. Add only device drivers to the station. When you save the new file, select “Device Driver Li-
brary” in the “Save as type” field:

The Save As dialog

You can save any station as a device driver library, as long as it contains only device drivers.

To edit a device driver library, load it by selecting “Open…” from the “File” menu, and choosing
“Device Driver Libraries” in the “Files of type” field.

Exporting Device Drivers

Another way to create a device driver library is by exporting the device drivers of a station. This
will create a library containing all device drivers in the station. To export device drivers, choose
“Export Device Drivers…” from the “Special” menu. A dialog will pop up, asking you for the file
name of the driver library.

Importing Device Drivers

To import device drivers into a station, choose “Import Device Drivers…” from the “Special” menu.
A dialog will appear, asking you to select a driver library.

Once you have selected a library, the Import Device Drivers dialog appears. Select all the device
drivers you want to import. To select more than one device driver, click while holding down the
Shift or Ctrl keys.

Testing a Station File

To test a station file, you must save it and then load it in the U.P.M.A.C.S. Operate System. You
can do both those things in one step by selecting “Save And Test Station” from the “Special”

 Page 144

U.P.M.A.C.S. Developer’s Manual Tools

menu. This will save the station, activate or start the Operate System, and load the station into
the Operate System.

Batch Processing of Registers

The U.P.M.A.C.S. Development System supports modifying, duplicating and deleting multiple
registers in one operation. To manipulate batches of registers, select “Modify/Duplicate Regis-
ters…” from the “Special” menu.

The Modify/Duplicate Registers dialog will appear. There are four things you can do with this dia-
log:

 Finding tags:
You can find and select all registers whose tag contains a certain search text. Enter the text in the
“Find” field and press the “Find All Tags” button.

 Modifying registers:
You can modify certain properties of all selected registers. Specify the changes you wish to make
using the fields of the dialog, and press the “Replace All” button.

 Duplicating registers:
You can make modified duplicates of all selected registers. Specify the changes you wish to
make using the fields of the dialog, and press the “Duplicate” button.

 Deleting registers:
You can delete all selected registers by pressing the “Delete All” button.

 Page 145

U.P.M.A.C.S. Developer’s Manual Tools

The Modify/Duplicate Registers Dialog

 Registers:
Select the registers that you want to process. To select multiple registers, click while holding
down the Shift or Ctrl key.

The list shows both name and tag of the register. You can resize the two columns by dragging the
edges of the column headers with the mouse. Click on the “Name” header to sort the registers by
name, click on the “Tag” header to sort them by tag.

 Find:
Enter the search text here. The search text is used for finding tags, and for modifying and dupli-
cating registers. When modifying or duplicating registers, the search text is replaced with the re-
place text for everything specified in the “Apply changes to” rectangle. In addition, if you are du-
plicating registers, the search text in the tag of the original register is replaced with the replace
text to create the tag of the new register. This means that the tags of all registers you wish to du-
plicate must contain the search text.

 Replace with:
Enter the text with which you want to replace the search text here. The replace text is used for
modifying and duplicating registers. When modifying or duplicating registers, the search text is
replaced with the replace text for everything specified in the “Apply changes to” rectangle. In addi-

 Page 146

U.P.M.A.C.S. Developer’s Manual Tools

tion, if you are duplicating registers, the search text in the tag of the original register is replaced
with the replace text to create the tag of the new register.

 Match case:
Check this box to find only text that matches the capitalization of the search text. If you leave this
box blank, upper and lower case letters are treated the same when searching for the search text.

 Whole word:
Check this box to look only for complete words when searching for the search text. If you leave
this box blank, the Development System will search for partial words as well as entire words.

 The “Apply changes to” rectangle:
When modifying or duplicating registers, the search text is replaced with the replace text for eve-
rything that you specify in this box. You can select any number of the following options:

Names:
Change the name of the register. If you are duplicating registers, and you do not check this box,
the new registers will have the same name as the originals, and you will have a hard time telling
them apart. This box should usually be checked when duplicating registers.

Log strings:
Change all custom log strings of the register.

Automatic controls:
Change all automatic controls defined for the register. If the tag of the SCL program used for the
automatic control contains the search text, the search text is replaced with the replace text to cre-
ate a new tag. The control is modified to use the SCL program that has the new tag instead.

Arguments of automatic controls:
Change all argument values of automatic controls defined for the register. All text will be replaced
in string arguments, numbers will be replaced in numerical arguments, and the values “true%”
and “false%” will be replaced in Boolean arguments.

Parameters of serial objects in sources:
Change all parameters of serial data objects used by any serial data object sources. All text will
be replaced in string parameters, numbers will be replaced in digital and analog parameters, and
the values “ON” and “OFF” will be replaced in bistate parameters.

Registers in sources:
Change the registers used by any summary sources. If the tag of any register used by a source
contains the search text, the search text is replaced with the replace text to create a new tag. The
source is modified to use the register that has the new tag instead.

Programs in sources:
Change the programs used by any summary sources. If the tag of any program used by a source
contains the search text, the search text is replaced with the replace text to create a new tag. The
source is modified to use the program that has the new tag instead.

Arguments of programs in sources:
Change all argument values of programs used by any summary. All text will be replaced in string
arguments, numbers will be replaced in numerical arguments, and the values “true%” and
“false%” will be replaced in Boolean arguments.

Parameters in Parameter Sources:
This field is used for legacy parameter sources only. See Batch Processing of Registers in
Appendix E: Legacy Objects on page 218 for details.

The “Set All” button:
Press this button to set all the check boxes.

 Page 147

U.P.M.A.C.S. Developer’s Manual Tools

The “Clear All” button:
Press this button to clear all the check boxes.

 Change serial ports in sources:
Check this box to modify any serial ports used by register sources. Select the ports you want to
replace in the “From” and “To” fields below.

From:
Select the port you want to replace here.

To:
Select the port with which you want to replace the port.

 Change devices in sources:
Check this box to modify any devices used by register sources. Specify a search and replace
string for the device’s tag in the “Find” and “Replace with” fields below.

Find:
Enter the search text here. The search text in the tag of the original device is replaced with the
replace text to create a new tag. The source is modified to use the device that has the new tag
instead.

Replace with:
Enter the replace text here. The search text in the tag of the original device is replaced with the
replace text to create a new tag. The source is modified to use the device that has the new tag
instead.

Match case:
Check this box to find only text that matches the capitalization of the search string. If you leave
this box blank, upper and lower case letters are treated the same when searching for the search
text.

Whole word:
Check this box to look only for complete words when searching for the search text. If you leave
this box blank, the Development System will search for partial words as well as entire words.

 Change serial objects and device data buffers in sources:
Check this box to change any serial data objects used by serial data object sources. Specify a
search and replace string for the data object’s tag in the “Find” and “Replace with” fields below.

Find:
Enter the search text here. The search text in the tag of the original data object is replaced with
the replace text to create a new tag. The source is modified to use the data object that has the
new tag instead.

Replace with:
Enter the replace text here. The search text in the tag of the original data object is replaced with
the replace text to create a new tag. The source is modified to use the data object that has the
new tag instead.

Match case:
Check this box to find only text that matches the capitalization of the search string. If you leave
this box blank, upper and lower case letters are treated the same when searching for the search
text.

Whole word:
Check this box to look only for complete words when searching for the search text. If you leave
this box blank, the Development System will search for partial words as well as entire words.

 Page 148

U.P.M.A.C.S. Developer’s Manual Tools

 Change device data buffer offsets in sources:
These fields are used for legacy device sources only. See Batch Processing of Registers in
Appendix E: Legacy Objects on page 218 for details.

 The “Find All Tags” button:
Press this button to select all registers whose tags contain the search text.

 The “Replace All” button:
Press this button to apply the changes you specified to all selected registers.

 The “Duplicate” button:
Press this button to create modified duplicates of all selected registers. The tags of the new regis-
ters will be created by replacing the search string in the original register’s tag with the replace
string. For that reason, the tag of all registers you are duplicating must contain the search text.

All changes you specified in the dialog will be applied to the new registers. If you did not check
the “Names” box in the “Apply changes to” rectangle, the new registers will have the same name
as the old ones, and it will be difficult to tell them apart. You should usually check the “Names”
box.

 The “Delete All” button:
Press this button to delete all selected registers. This will also remove references to those regis-
ters from all summary sources that use them.

 The “Close” button:
Press this button to close the Modify/Duplicate Registers dialog.

Batch Processing of SCL Programs

The U.P.M.A.C.S. Development System supports modifying, duplicating and deleting multiple
SCL programs in one operation. To manipulate batches of SCL programs, select “Mod-
ify/Duplicate SCL programs…” from the “Special” menu.

The Modify/Duplicate Programs dialog will appear. There are four things you can do with this dia-
log:

 Finding tags:
You can find and select all SCL programs whose tag contains a certain search text. Enter the text
in the “Find” field and press the “Find All Tags” button.

 Modifying SCL programs:
You can modify certain properties of all selected SCL programs. Specify the changes you wish to
make using the fields of the dialog, and press the “Replace All” button.

 Duplicating SCL programs:
You can make modified duplicates of all selected SCL programs. Specify the changes you wish to
make using the fields of the dialog, and press the “Duplicate” button.

 Deleting SCL programs:
You can delete all selected SCL programs by pressing the “Delete All” button.

 Page 149

U.P.M.A.C.S. Developer’s Manual Tools

The Modify/Duplicate Programs Dialog

 Programs:
Select the SCL programs that you want to process. To select multiple programs, click while hold-
ing down the Shift or Ctrl key.

The list shows both name and tag of the program. You can resize the two columns by dragging
the edges of the column headers with the mouse. Click on the “Name” header to sort the pro-
grams by name, click on the “Tag” header to sort them by tag.

 Find:
Enter the search text here. The search text is used for finding tags, and for modifying and dupli-
cating programs. When modifying or duplicating programs, the search text is replaced with the
replace text for everything specified in the “Apply changes to” rectangle. In addition, if you are
duplicating programs, the search text in the tag of the original program is replaced with the re-
place text to create the tag of the new program. This means that the tags of all programs you
wish to duplicate must contain the search text.

 Replace with:
Enter the text with which you want to replace the search text here. The replace text is used for
modifying and duplicating programs. When modifying or duplicating programs, the search text is
replaced with the replace text for everything specified in the “Apply changes to” rectangle. In addi-
tion, if you are duplicating programs, the search text in the tag of the original program is replaced
with the replace text to create the tag of the new program.

 Match case:
Check this box to find only text that matches the capitalization of the search text. If you leave this
box blank, upper and lower case letters are treated the same when searching for the search text.

 Whole word:
Check this box to look only for complete words when searching for the search text. If you leave
this box blank, the Development System will search for partial words as well as entire words.

 The “Apply changes to” rectangle:
When modifying or duplicating SCL programs, the search text is replaced with the replace text for
everything that you specify in this box. You can select any number of the following options:

 Page 150

U.P.M.A.C.S. Developer’s Manual Tools

Names:
Change the name of the SCL program. If you are duplicating programs, and you do not check this
box, the new programs will have the same name as the originals, and you will have a hard time
telling them apart. This box should usually be checked when duplicating programs.

String literals:
Change all string literals in the program’s code. String literals are enclosed in double quotes ("").

Remarks:
Change all remarks (REM statements) in the program’s code. Remarks are not used by
U.P.M.A.C.S. and are intended for explanatory notes in the program code.

All code:
Change all program code, even outside string literals and remarks. If you check this box, the
“String literals” and “Remarks” options are superfluous.

 The “Find All Tags” button:
Press this button to select all SCL programs whose tags contain the search text.

 The “Replace All” button:
Press this button to apply the changes you specified to all selected programs.

 The “Duplicate” button:
Press this button to create modified duplicates of all selected programs. The tags of the new SCL
programs will be created by replacing the search string in the original program’s tag with the re-
place string. For that reason, the tag of all SCL programs you are duplicating must contain the
search text.

All changes you specified in the dialog will be applied to the new SCL programs. If you did not
check the “Names” box in the “Apply changes to” rectangle, the new programs will have the same
name as the old ones, and it will be difficult to tell them apart. You should usually check the
“Names” box.

 The “Delete All” button:
Press this button to delete all selected programs.

 The “Close” button:
Press this button to close the Modify/Duplicate Programs dialog.

Batch Processing of SABus Requests

The U.P.M.A.C.S. Development System supports modifying, duplicating and deleting multiple
SABus requests in one operation. To manipulate batches of requests, select “Modify/Duplicate
SABus Requests…” from the “Special” menu.

The Modify/Duplicate SABus Requests dialog will appear. There are four things you can do with
this dialog:

 Finding tags:
You can find and select all requests whose tag contains a certain search text. Enter the text in the
“Find” field and press the “Find All Tags” button.

 Modifying requests:
You can modify certain properties of all selected requests. Specify the changes you wish to make
using the fields of the dialog, and press the “Replace All” button.

 Duplicating requests:
You can make modified duplicates of all selected requests. Specify the changes you wish to
make using the fields of the dialog, and press the “Duplicate” button.

 Page 151

U.P.M.A.C.S. Developer’s Manual Tools

 Deleting requests:
You can delete all selected requests by pressing the “Delete All” button.

The Modify/Duplicate SABus Requests Dialog

 SABus requests:
Select the requests that you want to process. To select multiple requests, click while holding
down the Shift or Ctrl key.

The list shows both name and tag of the requests. You can resize the two columns by dragging
the edges of the column headers with the mouse. Click on the “Name” header to sort the requests
by name, click on the “Tag” header to sort them by tag.

 Find:
Enter the search text here. The search text is used for finding tags, and for modifying and dupli-
cating requests. When modifying or duplicating requests, the search text is replaced with the re-
place text for everything specified in the “Apply changes to” rectangle. In addition, if you are du-
plicating requests, the search text in the tag of the original request is replaced with the replace
text to create the tag of the new request. This means that the tags of all requests you wish to du-
plicate must contain the search text.

 Replace with:
Enter the text with which you want to replace the search text here. The replace text is used for
modifying and duplicating requests. When modifying or duplicating requests, the search text is
replaced with the replace text for everything specified in the “Apply changes to” rectangle. In addi-
tion, if you are duplicating requests, the search text in the tag of the original request is replaced
with the replace text to create the tag of the new request.

 Match case:
Check this box to find only text that matches the capitalization of the search text. If you leave this
box blank, upper and lower case letters are treated the same when searching for the search text.

 Whole word:
Check this box to look only for complete words when searching for the search text. If you leave
this box blank, the Development System will search for partial words as well as entire words.

 The “Apply changes to” rectangle:
When modifying or duplicating parameters, the search text is replaced with the replace text for
everything that you specify in this box. You can select any number of the following options:

 Page 152

U.P.M.A.C.S. Developer’s Manual Tools

Names:
Change the name of the parameter. If you are duplicating parameters, and you do not check this
box, the new parameters will have the same name as the originals, and you will have a hard time
telling them apart. This box should usually be checked when duplicating parameters.

Fixed parameters:
Change the fixed parameters of all requests.

Registers in queries:
Change the registers used by any response data objects in the queries. If the tag of any register
used by a query contains the search text, the search text is replaced with the replace text to cre-
ate a new tag. The query is modified to use the register that has the new tag instead.

Programs in queries:
Change the programs used by any processor response data objects in queries. If the tag of any
program used by a query contains the search text, the search text is replaced with the replace
text to create a new tag. The query is modified to use the program that has the new tag instead.

Arguments of programs in queries:
Change all argument values of programs used by any processor response data objects in que-
ries. All text will be replaced in string arguments, numbers will be replaced in numerical argu-
ments, and the values “true%” and “false%” will be replaced in Boolean arguments.

Command programs:
Change the programs used by commands. If the tag of any program used by a command con-
tains the search text, the search text is replaced with the replace text to create a new tag. The
command is modified to use the program that has the new tag instead.

Arguments of command programs:
Change all argument values of programs used by commands. All text will be replaced in string
arguments, numbers will be replaced in numerical arguments, and the values “true%” and
“false%” will be replaced in Boolean arguments.

The “Set All” button:
Press this button to set all the check boxes.

The “Clear All” button:
Press this button to clear all the check boxes.

 The “Find All Tags” button:
Press this button to select all requests whose tags contain the search text.

 The “Replace All” button:
Press this button to apply the changes you specified to all selected requests.

 The “Duplicate” button:
Press this button to create modified duplicates of all selected requests. The tags of the new re-
quests will be created by replacing the search string in the original request’s tag with the replace
string. For that reason, the tag of all requests you are duplicating must contain the search text.

All changes you specified in the dialog will be applied to the new requests. If you did not check
the “Names” box in the “Apply changes to” rectangle, the new requests will have the same name
as the old ones, and it will be difficult to tell them apart. You should usually check the “Names”
box.

 The “Delete All” button:
Press this button to delete all selected requests.

 The “Close” button:
Press this button to close the Modify/Duplicate Requests dialog.

 Page 153

U.P.M.A.C.S. Developer’s Manual Tools

Transferring Register Sources Between Registers

You can copy register sources from one register to one or more others. To do this, select “Copy
Register Sources…” from the “Special” menu. The Copy Register Sources dialog will appear.

The Copy Register Sources Dialog

 From:
Select the register whose source you want to copy here. The type of the source will appear above
the right side of the list of registers.

 To:
Select all the register or registers to which you want to copy the source. To select multiple regis-
ters, click while holding down the Shift or Ctrl key. This list only shows registers of the same kind
as the register you selected under “From”. If no register is selected in the “From” list, this list is
empty.

 The “Copy” button:
Press this button to copy the source of the register you selected in the “From” list to the registers
you selected in the “To” list.

 The “Close” button:
Press this button to close the Copy Register Sources dialog.

Transferring Code Between Programs

You can copy code from one SCL program to one or more others. To do this, select “Copy Pro-
gram Code…” from the “Special” menu. The Copy Program Code dialog will appear.

 Page 154

U.P.M.A.C.S. Developer’s Manual Tools

The Copy Program Code Dialog

 From:
Select the program whose code you want to copy here.

 To:
Select the program or programs to which you want to copy the code. To select multiple programs,
click while holding down the Shift or Ctrl key.

 The “Copy” button:
Press this button to copy the code of the program you selected in the “From” list to the programs
you selected in the “To” list. The previous code of the programs will be lost.

 The “Append…” button:
Press this button to append the code of the program you selected in the “From” list to the end of
the code of the programs you selected in the “To” list.

 The “Prepend…” button:
Press this button to prepend the code of the program you selected in the “From” list to the begin-
ning of the code of the programs you selected in the “To” list.

 The “Close” button:
Press this button to close the Copy Program Code dialog.

Batch Processing of Graphic Objects

The Screen Editor supports modifying multiple graphic objects of different types in one operation.
To manipulate batches of objects, select “Modify Screen Objects…” from the “Special” menu.

The Change Screen Objects will appear. It allows you to perform sophisticated search-and-
replace operations on all currently selected graphic objects.

 Page 155

U.P.M.A.C.S. Developer’s Manual Tools

The Change Screen Objects Dialog

 Find:
Enter the search text here. The search text is replaced with the replace text for everything speci-
fied in the “Apply changes to” rectangle.

 Replace with:
Enter the text with which you want to replace the search text here. The search text is replaced
with the replace text for everything specified in the “Apply changes to” rectangle.

 Match case:
Check this box to find only text that matches the capitalization of the search text. If you leave this
box blank, upper and lower case letters are treated the same when searching for the search text.

 Whole word:
Check this box to look only for complete words when searching for the search text. If you leave
this box blank, the Development System will search for partial words as well as entire words.

 The “Apply changes to” rectangle:
When modifying or duplicating graphic objects, the search text is replaced with the replace text
for everything that you specify in this box. You can select any number of the following options:

Text:
Change all text in all graphic objects, including captions of controls, and text, prefixes, and suf-
fixes of indicators, and text of labels.

Registers used by indicators and labels:
Change the registers used by any indicator or label. If the tag of any screen used by an indicator
or label contains the search text, the search text is replaced with the replace text to create a new
tag. The object is modified to use the register that has the new tag instead.

Programs used by controls:
Change the programs used by any program controls. If the tag of any program used by a control
contains the search text, the search text is replaced with the replace text to create a new tag. The
control is modified to trigger the program that has the new tag instead.

Arguments for programs used by controls:
Change all argument values of programs used by any program controls. All text will be replaced
in string arguments, numbers will be replaced in numerical arguments, and the values “true%”
and “false%” will be replaced in Boolean arguments.

 Page 156

U.P.M.A.C.S. Developer’s Manual Tools

 Page 157

Screens used by controls:
Change the screens used by any screen and network screen controls.

Screen controls are modified as follows: If the tag of any program used by a screen control con-
tains the search text, the search text is replaced with the replace text to create a new tag. The
control is modified to show the screen that has the new tag instead.

For network screen controls, the search text is simply replaced in the screen name.

 The “Replace All” button:
Press this button to apply the changes you specified to all selected graphic objects.

 The “Close” button:
Press this button to close the Change Screen Objects dialog.

Deleting Off-Screen Objects

U.P.M.A.C.S. supports placing graphic objects partially or entirely outside the visible area of a
screen. Since graphic objects that lie entirely outside the screen area are not visible in the Oper-
ate System, it is not usually desirable to have objects placed outside the screen area. If you want
to remove all objects that lie entirely outside the screen area, select “Delete Off-Screen Objects”
from the “Special” menu.

U.P.M.A.C.S. Developer’s Manual Menus

MENUS

The File Menu

 Close Window:
Closes the current SCL Program Editor or Screen Editor window.

 New:
Creates a new file. The file may be used as a station or as a device driver library.

 Open:
Opens an existing station file or device driver library for editing. This closes the file you are cur-
rently editing. If you haven’t saved the current file, you will be asked if you want to save.

 Load Images:
Loads images from an image library.

 Reload Images:
Reloads the last image library loaded.

 Save:
Saves the current file.

 Save As:
Saves the current file under a new name. May also be used to save driver libraries as station files
and vice versa, subject to the limitations of device driver libraries.

 Print:
Prints the current SCL Program Editor window.

 Print Preview:
Lets you see what a printout of the current SCL Program Editor window will look like.

 Print Setup:
Lets you specify the printer and print options for printing SCL Program Editor windows.

 List of recently opened files:
Lets you open a file you recently used.

 Exit:
Exits the U.P.M.A.C.S. Development System. If you haven’t saved the current file, you will be
asked if you want to save.

The Edit Menu

 Undo:
Undoes the last thing you did in the SCL Program Editor.

 Redo:
Redoes the last thing you undid in the SCL Program Editor.

 Cut:
Removes the current selection and places it on the clipboard.

 Copy:
Places a copy of the current selection on the clipboard.

 Paste:
Replaces the current selection with the content of the clipboard.

 Paste Special:
Allows you to insert tags of database objects into an SCL Program Editor window.

 Page 158

U.P.M.A.C.S. Developer’s Manual Menus

 Delete:
Deletes the current selection.

 Duplicate:
Makes a copy of all graphic objects currently selected.

 Select All:
Selects everything.

 Go To Line:
Lets you place the cursor on a specific line in an SCL Program Editor window.

 Find:
Allows you to search for text in an SCL Program Editor window.

 Find Again:
Finds the next occurrence of the last find.

 Replace:
Allows you to search for text in an SCL Program Editor window and replace it.

 Toggle Bookmark:
Adds or removes a bookmark in the current line of an SCL Program Editor window.

 Previous Bookmark:
Goes to the previous bookmark in an SCL Program Editor window.

 Next Bookmark:
Goes to the next bookmark in an SCL Program Editor window.

 Clear All Bookmarks:
Clears all bookmarks in an SCL Program Editor window.

 Properties:
Allows you to edit the properties of a screen or an SCL program when viewing its editor.

 SCL Syntax Colours:
Allows you to specify the syntax colours used by the SCL Program Editor.

The View Menu

 Device Drivers:
Shows the list of all device drivers.

 Ports:
Shows the list of all serial ports.

 Registers:
Shows the list of all registers.

 Screens:
Shows the list of all screens.

 Programs:
Shows the list of all SCL programs.

 SABus Request:
Shows the list of all SABus requests.

 Indicator Values:
Allows you to specify the values that the Screen Editor displays for digital indicators, analog indi-
cators, and string indicators.

 Tool Bars:
Allows you to select which tool bars are visible.

 Page 159

U.P.M.A.C.S. Developer’s Manual Menus

 Drawing Properties:
Shows or hides the Drawing Properties window.

 Status Bar:
Shows or hides the status bar. The status is located at the bottom of the U.P.M.A.C.S. Develop-
ment System window, and displays information about the Caps Lock and Num Lock keys, and
about the overwrite mode and current line of the SCL Program Editor.

 Grid:
Shows or hides the graphics grid. This does not affect the grid snap.

 Grid Size:
Lets you change the spacing between grid points of the graphics grid.

 Align Grid With Screen:
Moves the graphics grid so that one grid point is aligned with the upper left-hand corner of the
screen.

 Align Grid With Selection:
Moves the graphics grid so that one grid point is aligned with the current selection.

The New Menu

 Device Driver:
Creates a new device driver.

 Port:
Creates a new serial port.

 Register:
Creates a new register. You will be asked to select the type of register to create.

 Screen:
Creates a new screen.

 Program:
Creates a new SCL program.

 SABus Request:
Creates a new SABus request. You will be asked whether to create a query or a command.

The Draw Menu

 Lines:
Selects the line shape as the shape for static objects, bistate indicators, and multistate indicators.

 Splines:
Selects the Bezier spline (curved line) shape as the shape for static objects, bistate indicators,
and multistate indicators.

 Rectangles:
Selects the rectangle shape as the shape for static objects, bistate indicators, and multistate indi-
cators.

 Ellipses:
Selects the ellipse shape as the shape for static objects, bistate indicators, and multistate indica-
tors.

 Text:
Selects the text shape as the shape for static objects, bistate indicators, and multistate indicators.

 Page 160

U.P.M.A.C.S. Developer’s Manual Menus

 Images:
Selects the image shape as the shape for static objects, bistate indicators, and multistate indica-
tors.

 Select:
Allows you to select graphic objects.

 Reshape:
Allows you to select graphic objects, and adjust the shape of Bezier splines (curved lines), the
margins of digital indicators, analog indicators, and string indicators, and the label rectangles of
X-Y position markers.

 Objects:
Selects the Object drawing tool.

 3D Objects:
Selects the 3D Object drawing tool.

 Bistate Indicators:
Selects the Bistate Indicator drawing tool.

 Multistate Indicators:
Selects the Multistate Indicator drawing tool.

 Digital Indicators:
Selects the Digital Indicator drawing tool.

 Analog Indicators:
Selects the Analog Indicator drawing tool.

 String Indicators:
Selects the String Indicator drawing tool.

 Dials:
Selects the Dial drawing tool.

 Graphs:
Selects the Graph drawing tool.

 X-Y Position Markers:
Selects the X-Y position marker drawing tool.

 Controls:
Selects the Control drawing tool.

 Labels:
Selects the Label drawing tool.

 Lock Tool:
Locks and unlocks the current drawing tool.

 Snap To Grid:
Switches grid snap on or off. While grid snap is on, all objects are created, moved, and resized to
the nearest grid point.

 Get Properties From Selection:
Changes the current drawing properties (used to draw new objects) to match the properties of the
currently selected objects.

The Arrange Menu

 Raise:
Moves the selected graphic objects one object further forward.

 Page 161

U.P.M.A.C.S. Developer’s Manual Menus

 Lower:
Moves the selected graphic objects one object further backward.

 Bring To Front:
Moves the selected graphic objects all the way to the front.

 Send To Back:
Moves the selected graphic objects all the way to the back.

 Flip Horizontally:
Flips (mirrors) the selected graphic objects left-to-right. All selected objects are flipped individually
about their own centers. To flip a group of objects together about their common center, group
them first. Some objects, like text and images, cannot be flipped.

 Flip Vertically:
Flips (mirrors) the selected graphic objects top-to-bottom. All selected objects are flipped indi-
vidually about their own centers. To flip a group of objects together about their common center,
group them first. Some objects, like text and images, cannot be flipped.

 Rotate 90° Left:
Rotates the selected graphic objects 90° to the left (counter-clockwise). All selected objects are
rotated individually about their own centers. To rotate a group of objects together about their com-
mon center, group them first. Some objects, like text and images, cannot be rotated.

 Rotate 90° Right:
Rotates the selected graphic objects 90° to the right (clockwise). All selected objects are rotated
individually about their own centers. To rotate a group of objects together about their common
center, group them first. Some objects, like text and images, cannot be rotated.

 Rotate 180°:
Rotates the selected graphic objects by 180°. All selected objects are rotated individually about
their own centers. To rotate a group of objects together about their common center, group them
first. Some objects, like text and images, cannot be rotated.

 Align With Grid:
Aligns the currently selected graphic objects to the nearest grid point. All selected objects are
aligned together as a group; their position relative to each other is not changed.

 Align Objects:
Allows you to align all selected graphic object with each other by popping up the Align Objects
dialog.

 Group:
Groups all selected graphic objects so they behave as one single object.

 Ungroup:
Breaks up all selected graphic object groups into their component objects.

The Special Menu

 Save Device Drivers:
Saves all device drivers in the current station as a device driver library.

 Import Device Drivers:
Allows you to import device drivers from a device driver library.

 Save And Test Station:
Allows you to save the current station and test it by loading it in the U.P.M.A.C.S. Operate Sys-
tem all in one step.

 Modify/Duplicate Registers:
Allows you to modify, duplicate, or delete multiple registers at the same time.

 Page 162

U.P.M.A.C.S. Developer’s Manual Menus

 Page 163

 Modify/Duplicate Programs:
Allows you to modify, duplicate, or delete multiple SCL programs at the same time.

 Modify/Duplicate SABus Requests:
Allows you to modify, duplicate, or delete multiple SABus requests at the same time.

 Copy Register Sources:
Allows you to transfer register sources between registers.

 Copy Program Code:
Allows you to transfer program code between SCL programs.

 Modify Screen Objects:
Allows you to modify multiple graphic objects of different types at the same time.

 Delete Off-Screen Objects:
Deletes all graphic objects in the current Screen Editor which lie entirely outside the visible area
of the screen.

The Window Menu

 Auto Size:
Adjusts the size of the current Screen Editor window to fit the size of the screen.

 Cascade:
Arranges all Screen Editor and SCL Program Editor windows so that they overlap.

 Tile Horizontally:
Arranges all Screen Editor and SCL Program Editor windows as horizontal non-overlapping tiles.

 Tile Vertically:
Arranges all Screen Editor and SCL Program Editor windows as vertical non-overlapping tiles.

 Arrange Icons:
Arranges all minimized Screen Editor and SCL Program Editor windows at the bottom of the
U.P.M.A.C.S. Development System window.

 Close All:
Closes all Screen Editor and SCL Program Editor windows.

 List of open windows:
Allows you to bring a specific window to the front.

The Help Menu

 Development System:
Shows the help file for the Development System file.

 Device Drivers:
Shows the Device Drivers help file that describes how to develop device drivers..

 SCL Language:
Shows the SCL Language help file.

 Find Keyword:
In an SCL Program Editor, displays help for the SCL keyword that the cursor is on (or that is cur-
rently selected) from the SCL Language help file.

 About U.P.M.A.C.S.:
Shows the version and copyright information for the version of the U.P.M.A.C.S. Development
System you are currently running.

U.P.M.A.C.S. Developer’s Manual Appendix A: Regular Expressions

TOOLS BARS

The Main Tool Bar

new file

open
file

save and
test

SCL
keyword

help

save help
topics

auto
size

 New file:
Creates a new file. The file may be used as a station or as a device driver library.

 Open file:
Opens an existing station file or device driver library for editing. This closes the file you are cur-
rently editing. If you haven’t saved the current file, you will be asked if you want to save.

 Save:
Saves the current file.

 Save and test:
Allows you to save the current station and test it by loading it in the U.P.M.A.C.S. Operate Sys-
tem all in one step.

 Help topics:
Shows the Development System help file.

 SCL keyword help:
In an SCL Program Editor, displays help for the SCL keyword that the cursor is on (or that is cur-
rently selected) from the SCL Language help file.

 Auto size:
Adjusts the size of the current Screen Editor window to fit the size of the screen.

The Edit Tools

cut

copy print
toggle

bookmark
get

properties

paste undo redo next
bookmark

clear all
bookmarks

previous
bookmark

 Cut:
Removes the current selection and places it on the clipboard.

 Copy:
Places a copy of the current selection on the clipboard.

 Page 164

U.P.M.A.C.S. Developer’s Manual Appendix A: Regular Expressions

 Paste:
Replaces the current selection with the content of the clipboard.

 Print:
Prints the current SCL Program Editor window.

 Undo:
Undoes the last thing you did in the SCL Program Editor.

 Redo:
Redoes the last thing you undid in the SCL Program Editor.

 Toggle bookmark:
Adds or removes a bookmark in the current line of an SCL Program Editor window.

 Previous bookmark:
Goes to the previous bookmark in an SCL Program Editor window.

 Next bookmark:
Goes to the next bookmark in an SCL Program Editor window.

 Clear all bookmarks:
Clears all bookmarks in an SCL Program Editor window.

 Get properties:
In the Screen Editor, changes the current drawing properties (used to draw new objects) to match
the properties of the currently selected objects.

The New Object Tools

new
device
driver

new
register

new
SCL

program

new
serial
port

new
screen

new
SABus
request

 New device driver:
Creates a new device driver.

 New serial port:
Creates a new serial port.

 New register:
Creates a new register. You will be asked to select the type of register to create.

 New screen:
Creates a new screen.

 New SCL program:
Creates a new SCL program.

 New SABus request:
Creates a new SABus request. You will be asked whether to create a query or a command.

 Page 165

U.P.M.A.C.S. Developer’s Manual Appendix A: Regular Expressions

The Object Lists Tool Bar

toggle
device
drivers

toggle
registers

toggle
SCL

programs

toggle
serial
ports

toggle
screens

toggle
SABus

requests

 Toggle device drivers:
Shows or hides the list of all device drivers.

 Toggle serial ports:
Shows or hides the list of all serial ports.

 Toggle registers:
Shows or hides the list of all registers.

 Toggle screens:
Shows or hides the list of all screens.

 Toggle SCL programs:
Shows or hides the list of all SCL programs.

 Toggle SABus requests:
Shows or hides the list of all SABus requests.

The Drawing Tools

select bistate digitalstatic
objects

string controls lines rectangles textgraphs

reshape labelsmultistate analog splines ellipses images
3D

objects dials
X-Y pos.
markers

The Drawing Tools

 Select:
Allows you to select graphic objects.

 Reshape:
Allows you to select graphic objects, and adjust the shape of Bezier splines (curved lines), the
margins of digital indicators, analog indicators, and string indicators, and the label rectangles of
X-Y position markers.

 Static objects:
Selects the Object drawing tool. Click the button repeatedly to lock and unlock the tool.

 3D objects:
Selects the 3D Object drawing tool. Click the button repeatedly to lock and unlock the tool.

 Page 166

U.P.M.A.C.S. Developer’s Manual Appendix A: Regular Expressions

 Bistate:
Selects the Bistate Indicator drawing tool. Click the button repeatedly to lock and unlock the tool.

 Multistate:
Selects the Multistate Indicator drawing tool. Click the button repeatedly to lock and unlock the
tool.

 Digital:
Selects the Digital Indicator drawing tool. Click the button repeatedly to lock and unlock the tool.

 Analog:
Selects the Analog Indicator drawing tool. Click the button repeatedly to lock and unlock the tool.

 String:
Selects the String Indicator drawing tool. Click the button repeatedly to lock and unlock the tool.

 Dials:
Selects the Dial drawing tool. Click the button repeatedly to lock and unlock the tool.

 Graphs:
Selects the Graph drawing tool. Click the button repeatedly to lock and unlock the tool.

 X-Y pos. markers:
Selects the X-Y position marker drawing tool. Click the button repeatedly to lock and unlock the
tool.

 Controls:
Selects the Control drawing tool. Click the button repeatedly to lock and unlock the tool.

 Labels:
Selects the Label drawing tool. Click the button repeatedly to lock and unlock the tool.

 Lines:
Selects the line shape as the shape for static objects, bistate indicators, and multistate indicators.

 Splines:
Selects the Bezier spline (curved line) shape as the shape for static objects, bistate indicators,
and multistate indicators.

 Rectangles:
Selects the rectangle shape as the shape for static objects, bistate indicators, and multistate indi-
cators.

 Ellipses:
Selects the ellipse shape as the shape for static objects, bistate indicators, and multistate indica-
tors.

 Text:
Selects the text shape as the shape for static objects, bistate indicators, and multistate indicators.

 Images:
Selects the image shape as the shape for static objects, bistate indicators, and multistate indica-
tors.

 Page 167

U.P.M.A.C.S. Developer’s Manual Appendix A: Regular Expressions

The Arranging Tools

lower

raise
bring to

front ungroup

send to
back

group

 Lower:
Moves the selected graphic objects one object further backward.

 Raise:
Moves the selected graphic objects one object further forward.

 Send to back:
Moves the selected graphic objects all the way to the back.

 Bring to front:
Moves the selected graphic objects all the way to the front.

 Group:
Groups all selected graphic objects so they behave as one single object.

 Ungroup:
Breaks up all selected graphic object groups into their component objects.

The Grid Tools

toggle
grid

snap
to grid

align
with grid

align grid
with screen

grid
size

align grid
with selection

 Toggle grid:
Shows or hides the graphics grid. This does not affect the grid snap.

 Snap to grid:
Switches grid snap on or off. While grid snap is on, all objects are created, moved, and resized to
the nearest grid point.

 Grid size:
Lets you change the spacing between grid points of the graphics grid.

 Align with grid:
Aligns the currently selected graphic objects to the nearest grid point. All selected objects are
aligned together as a group; their position relative to each other is not changed.

 Align grid with selection:
Moves the graphics grid so that one grid point is aligned with the current selection.

 Page 168

U.P.M.A.C.S. Developer’s Manual Appendix A: Regular Expressions

 Align grid with screen:
Moves the graphics grid so that one grid point is aligned with the upper left-hand corner of the
screen.

The Alignment Tools

align
left

edges

align
horizontal

centers
distribute

horizontally

align
vertical
centers

distribute
vertically

align
right

edges

align
top

edges

align
bottom
edges

 Align left edges:
Aligns the left edge of all objects with the leftmost object.

 Align horizontal centers:
Aligns the horizontal centers of all objects at the center of the selection.

 Align right edges:
Aligns the right edge of all objects with the rightmost object.

 Distribute horizontally:
Spaces the objects evenly along the horizontal axis.

 Align top edges:
Aligns the top edge of all objects with the topmost object.

 Align vertical centers:
Aligns the vertical centers of all objects at the center of the selection.

 Align bottom edges:
Aligns the bottom edge of all objects with the bottommost object.

 Distribute vertically:
Spaces the objects evenly along the vertical axis.

The Transformation Tools

mirror
horizontally

mirror
vertically

rotate 90°
right

rotate 90°
left

rotate
180°

 Page 169

U.P.M.A.C.S. Developer’s Manual Appendix A: Regular Expressions

 Page 170

 Mirror vertically:
Mirrors (flips) the selected graphic objects top-to-bottom. All selected objects are flipped individu-
ally about their own centers. To flip a group of objects together about their common center, group
them first. Some objects, like text and images, cannot be flipped.

 Mirror horizontally:
Mirrors (flips) the selected graphic objects left-to-right. All selected objects are flipped individually
about their own centers. To flip a group of objects together about their common center, group
them first. Some objects, like text and images, cannot be flipped.

 Rotate 90° left:
Rotates the selected graphic objects 90° to the left (counter-clockwise). All selected objects are
rotated individually about their own centers. To rotate a group of objects together about their com-
mon center, group them first. Some objects, like text and images, cannot be rotated.

 Rotate 90° right:
Rotates the selected graphic objects 90° to the right (clockwise). All selected objects are rotated
individually about their own centers. To rotate a group of objects together about their common
center, group them first. Some objects, like text and images, cannot be rotated.

 Rotate 180°:
Rotates the selected graphic objects by 180°. All selected objects are rotated individually about
their own centers. To rotate a group of objects together about their common center, group them
first. Some objects, like text and images, cannot be rotated.

U.P.M.A.C.S. Developer’s Manual Appendix A: Regular Expressions

APPENDICES

Appendix A: Regular Expressions

Regular expressions are used as mask patterns, prefixes, and suffixes, as error patterns, as
alarm triggers for string registers, and in filter sources and strings sources. A regular expression
is basically a search string with added capabilities. The simplest regular expression simply
matches a string:

Deconstructionism

matches “Deconstructionism”.

A regular expression consists of one or more sections, separated by vertical bars (“|”). The regu-
lar expression matches a string, if any of the sections match:

Zebra|Aardvark

matches both “Zebra” and “Aardvark”.

Each section consists of a series of concatenated parts, optionally followed by modifiers.

Parts

A part can be one of the following:

 Characters

 Sets of characters

 Special characters

 An entire regular expression, enclosed in parentheses (“()”).

Each part matches one or more characters.

Character Parts

Any character that does not have a special meaning (i.e. any character except “|”, “(“, “)”, “{“, “[“,
“?”, “*”, “+”, “.”, “~”, “&”, “@”, “#”, “$”, “%”, and “\”) simply matches itself:

Q

matches “Q”.

=

matches “=“.

To match a character with special meaning, prepend it with a backslash:

 Sequence Character matched
\(left parenthesis (“(“)

 Page 171

U.P.M.A.C.S. Developer’s Manual Appendix A: Regular Expressions

\) right parenthesis (“)”)

\{ left brace (“{“)

\[left square bracket (“[“)

\? question mark (“?”)

* asterisk (“*”)

\+ plus sign (“+”)

\. period (“.”)

\~ tilde (“~”)

\& ampersand (“&”)

\@ commercial at (“@”)

\# octothorpe (“#”)

\$ dollar symbol (“$”)

\% percent sign (“%”)

\\ backslash (“\”)

You can match a special set of non-printable characters by using the following character se-
quences:

 Sequence Character matched Code (hexa-
decimal)

\0 null character $00

\b backspace $08

\t tab $09

\n linefeed $0A

\v vertical tab $0B

\f form feed $0C

\r carriage return $0D

To match any other non-printable character, use \x followed by two hexadecimal digits specifying
the character code. Here are some examples:

 Sequence Character matched Code (hexa-
decimal)

\x02 start transmission $02

\x03 end of transmission $03

\xFF delete $FF

\xB7 ASCII $B7 $B7

\x69 capital letter “E” $69

All other characters can just be entered plainly. If you feel so inclined, however, you can use a
backslash followed by that character.

Here are some examples:

 Sequence Character matched Code (hexa-
decimal)

\a letter “a” $97

\6 digit six $56

 Page 172

U.P.M.A.C.S. Developer’s Manual Appendix A: Regular Expressions

\/ slash $47

\R capital letter “R” $82

Character Set Parts

A set of characters is enclosed in square brackets (“[]”). The set matches any character in it, or, if
the open square bracket is followed by a caret (“^”), any character not in it (this is called an in-
verted set):

[AY#]

matches “A”, “Y”, and “#”.

[^AY#]

matches any character but “A”, “Y”, and “#”.

To include a caret in the set, place it anywhere but the beginning:

[AY^#]

matches “A”, “Y”, “^”, and “#”.

To include a closing square bracket (“]”) in the set, place it as the first character in the set (after
the caret, for an inverted set):

[]AY]

matches “]”, “A”, and “Y”.

[^]AY]

matches any character but “]”, “A”, and “Y”.

To enter a whole range of characters, separate the two endpoints by a dash (“-”):

[A-Z]

matches any capital letter.

[0-9A-F]

matches any capital hex digit.

The endpoint of one range can be the starting point of the next:

[A-H-Z]

matches any capital letter (the same as [A-Z]).

To include a dash, make it the first or last character in the range, after the caret for inverted sets:

 Page 173

U.P.M.A.C.S. Developer’s Manual Appendix A: Regular Expressions

[AZ-]

matches “A”, “Z”, and “-”.

[-01]

matches “-”, “0”, and “1”.

[^-+]

matches any character but “-” and “+”.

To include a dash and a closing square bracket, place the bracket at the beginning, and the dash
at the end:

[]AB-]

matches “]”, “A”, “B”, and “-”.

[^]XY-]

matches any character but “]”, “X”, “Y”, and “-”.

Non-printable characters can be entered as described in 1.:

[\n\r]

matches a carriage return or a line feed.

[\\\x01]

matches “\” or an ASCII $01(SOH)

Closing square brackets, dashes, and carets can be placed anywhere in the set, if they are pre-
pended by a backslash:

[\^\-\]ABC]

matches “^”, “-”, “]”, “A”, “B”, and “C”.

Special Character Parts

The following special characters match all characters of a specific type:

 Charac-
ter

 Description Characters matched

. period any character

~ tilde any printable character (ASCII $20-$7E)

& ampersand any alphanumeric character (“0”-”9”, “A”-”Z”, “a”-”z”)

@ commercial at any letter (“A”-”Z”, “a”-”z”)

octothorpe any digit (“0”-”9”)

$ dollar sign any hexadecimal digit (“0”-”9”, “A”-”F”, “a”-”f”)

% percent sign any binary digit (“0” and “1”)

 Page 174

U.P.M.A.C.S. Developer’s Manual Appendix A: Regular Expressions

Modifiers

Each part may be followed by one of four modifiers:

 A question mark (“?”)

 An asterisk (“*”)

 A plus sign (“+”)

 A range, enclosed in braces (“{ }”)

The modifiers control how many times a part is matched. A part without a modifier is matched
exactly once.

The Question Mark Modifier

A part that is followed by a question mark (“?”) is matched zero times or once. This means that it
may but need not appear in the string to be matched:

w?

matches the empty string and “w”.

.?

matches the empty string or a single character.

The Asterisk Modifier

A part that is followed by an asterisk (“*”) is matched zero or more times:

$*

matches the empty string, as well as any sequence of hex digits, e.g. “4”, “34F2”, and “deadbeef”.

[\t]*

matches the empty string and any combination of tabs and spaces.

The Plus Sign Modifier

A part that is followed by a plus sign (“+”) is matched one or more times:

A+

matches one or more “A”s, e.g. “A”, “AA”, “AAAAAAAAAAAA”, etc.

(so)+

matches one or more “so”s, e.g. “so”, “soso”, “sososo”, etc.

 Page 175

U.P.M.A.C.S. Developer’s Manual Appendix A: Regular Expressions

Range Modifiers

A part that is followed by a number enclosed in braces is matched that many times:

#{12}

matches any twelve-digit number.

A part followed by two numbers enclosed in braces (separated by a comma) is matched at least
as many times as the first number, and at most as many times as the second.

[A-Z]{5,10}

matches between five and ten capital letters.

If the second number is missing, then the part is matched as many times as the first number, or
more:

${4,}

matches four or more hex digits.

Sections

A section matches a string whose characters match each of its parts in sequence:

Elk

matches “E”, followed by “l”, followed by “k”, i.e. “Elk”.

r#d#

matches “r”, followed by a digit followed by “d”, followed by a digit, amongst others “r8d9” and
“r2d2”.

C[16][46]

matches a “C”, followed by “1” or “6”, followed by “4” or “6”, i.e. “C14”, “C16”, “C64”, and “C66”.

Dum-?(didl-?)+dum

matches “D”, followed by “u”, “m”, perhaps a “-”, one or more “didl”s or “didl-”s, followed by “d”,
“u”, and “m”, e.g.:

Dum-didl-dum

Dum-didldidl-dum

Dum-didl-didldidl-dum

Dumdidl-didldidl-didldidl-dum

etc.

 Page 176

U.P.M.A.C.S. Developer’s Manual Appendix A: Regular Expressions

Note: No section of a regular expression may be constructed such that is could match
zero characters. The following expressions are not valid sections:

 .* error!

 #*\t* error!

 a?b?c?d?e? error!

Each of these is an invalid section, as they would match an empty string.

Examples of regular expressions

\x02.*\x03

matches an STX (ASCII $02) / ETX (ASCII $03) character pair with any number of characters in
between.

[\x06\x21].*\x03

matches an ACK (ASCII $06) or NAK (ASCII $21) / ETX (ASCII $03) character pair with any
number of characters in between.

No (blue|green|red) dogs? (allowed|wanted)!|Hand me that b[aeiu]ll(, please)?\.

matches all of the following:

No blue dog allowed!

No green dog allowed!

No red dog allowed!

No blue dogs allowed!

No green dogs allowed!

No red dogs allowed!

No blue dog wanted!

No green dog wanted!

No red dog wanted!

No blue dogs wanted!

No green dogs wanted!

No red dogs wanted!

Hand me that ball.

Hand me that bell.

Hand me that bill.

Hand me that bull.

Hand me that ball, please.

Hand me that bell, please.

Hand me that bill, please.

 Page 177

U.P.M.A.C.S. Developer’s Manual Appendix A: Regular Expressions

 Page 178

Hand me that bull, please.

Here is another example:

t-000#s|We have liftoff!

matches all of the following:

t-0009s

t-0008s

t-0007s

t-0006s

t-0005s

t-0004s

t-0003s

t-0002s

t-0001s

t-0000s

We have liftoff!

U.P.M.A.C.S. Developer’s Manual Appendix B: Entering Binary Data

Appendix B: Entering Binary Data

Some data strings can contain non-printable characters. The entry fields for such data strings
allow you to select two different ways of entering data: hexadecimal format, and text format. You
can switch between entry modes by clicking the “Show as hex” and “Show as text” radio buttons.

Entering Data in Text Format

If the “Show as text” button is pressed, you can enter data normally as text. Special sequences of
characters are used to enter non-printable characters that you cannot type on the keyboard. All
these sequences begin with a backslash (“\”):

Sequence Character Code (hexadecimal)
\0 null character $00

\b backspace $08

\t tab $09

\n linefeed $0A

\v vertical tab $0B

\f form feed $0C

\r carriage return $0D

to specify any other non-printable character, use \x followed by two hexadecimal digits specifying
the character code. Here are some examples:

Sequence Character Code (hexadecimal)
\x02 start transmission $02

\x03 end of transmission $03

\xFF delete $FF

\xB7 ASCII $B7 $B7

\x69 capital letter “E” $69

To specify a backslash, use two backslashes in a row:

Sequence Character Code (hexadecimal)
\\ backslash $92

Printable characters, with the exception of the backslash, are just entered plainly. If you feel so
inclined, however, you can use a backslash followed by that character.

 Page 179

U.P.M.A.C.S. Developer’s Manual Appendix B: Entering Binary Data

Here are some examples:

Sequence Character matched Code (hexadecimal)
\a letter “a” $97

\6 digit six $56

\/ slash $47

\R capital letter “R” $82

Entering Data in Hexadecimal Format

If the “Show as hex” button is pressed, you can enter data as hexadecimal numbers separated by
spaces. Each number corresponds to one character.

 Page 180

U.P.M.A.C.S. Developer’s Manual Appendix C: Entering Special Characters

Appendix C: Entering Special Characters

The U.P.M.A.C.S. Development System allows you to enter special characters, like the degree
symbol (“°”) or the micro symbol (“µ”) easily using special key combinations:

Symbol: Key combination:
± Ctrl + Shift + “=“ or Ctrl + “+” (numerical keyboard)

× Ctrl + Shift + “8” or Ctrl + “*” (numerical keyboard)

÷ Ctrl + “/” or Ctrl + “/” (numerical keyboard)

µ Ctrl + “M”

° Ctrl + “0” (zero)

¹ Ctrl + “1”

² Ctrl + “2”

³ Ctrl + “3”

½ Ctrl + Shift + “2”

¾ Ctrl + Shift + “3”

¼ Ctrl + Shift + “4”

If you press Ctrl + Space at any time, a menu with all available special characters, including let-
ters with diacritical marks (accents, Umlaut) will appear.

 Page 181

U.P.M.A.C.S. Developer’s Manual Appendix D: Uplink Port Protocol

Appendix D: Uplink Port Protocol

Packet Format

The uplink port protocol is based on Scientific Atlanta’s SABus protocol. Each request has the
following format:

Byte Number: Value:
1 STX (Hex $02)

2 SABus address (configurable from the Operate Sys-
tem)

3 request opcode

4 to n−2 request parameters (if required)

n−1 ETX (Hex $03)

n LRC checksum of bytes 1 to n−1

The LRC is the logical XOR of all other bytes in the packet, including the STX and ETX.

If the request was processed successfully, the controller will respond with a response packet:

Byte Number: Value:
1 ACK (Hex $06)

2 SABus address (same as request packet)

3 request opcode (same as request packet)

4 to n−2 n+2 response parameters (if required)

n−1 ETX (Hex $03)

n LRC checksum of bytes 1 to n−1

If an error occurred processing the packet, the control system will respond with an error packet:

Byte Number: Value:
1 NAK (Hex $15)

2 SABus address (same as request packet)

3 request opcode (same as request packet)

4 to n−2 error message

n−1 ETX (Hex $03)

n LRC checksum of bytes 1 to n−1

Requests with parity errors, a bad start or stop character, bad address, or bad checksum are ig-
nored.

Error Messages

The table below shows all the built-in error messages that may be returned. Variable parameters
are shown enclosed in angle brackets (“<>“), but the brackets do not actually appear in the error
message. They are shown merely for clarity.

 Page 182

U.P.M.A.C.S. Developer’s Manual Appendix D: Uplink Port Protocol

Error Message: Meaning:
OPC unrecognized opcode.

PRM<nn> bad parameter number <nn>. <nn> is always two
digits

PRM## too many parameters (The “##” appears as is in the
error response. It is not shown as a placeholder for
a number here.)

USR insufficient user privilege level

PRG<nnnn><msg> SCL program error on line <nnnn>. <nnnn> is al-
ways four digits, <msg> is a variable length error
description.

You can define any number of other error messages you may require for your protocol.

If no station file is loaded, U.P.M.A.C.S. returns the OPC error code to all requests except the user
request (see below).

Built-In Requests

The two requests described below are built into the U.P.M.A.C.S. Operate System. You cannot
redefine the opcodes for those two requests.

There are no spaces between the parameters; the spaces included in the descriptions are there
merely for the sake of better readability. Variable parameters are shown enclosed in angle brack-
ets (“<>“), and literal characters that appear as is in the request or response packet are shown in
single quotation marks. Neither the angle brackets or quotation marks are part of the packet; they
are shown merely for clarity.

 User Request
This request returns information about the current user, or it signs on or off as a user. In order to
execute SCL programs that require signing on, you must use this command to sign on to the sys-
tem. Signing on from an uplink port is not the same as signing on locally.

Opcode: ‘U’ (character code $55)

This request may be used in one of three ways:

Query user:

▫ Request:

STX <address> ‘U’ ETX LRC

▫ Response:

If no user is signed on, the response will be:

ACK <address> ‘U’ ‘-’ ETX LRC

If the user <user name> is signed on from the uplink port on which the request was received, the
response will be:

ACK <address> ‘U’ ‘R’ <user name> ETX LRC

 Page 183

U.P.M.A.C.S. Developer’s Manual Appendix D: Uplink Port Protocol

If the user <user name> is signed on from locally, the response will be:

ACK <address> ‘U’ ‘L’ <user name> ETX LRC

If the user <user name> is signed on from a remote computer, the response will be:

ACK <address> ‘U’ ‘N’ <user name> ETX LRC

If the user <user name> is signed from the uplink port <port name> (other than the one on which
the request was received) the response will be:

ACK <address> ‘U’ ‘U’ <port name> ‘:’ <user name> ETX LRC

Sign on

▫ Request:

STX <address> ‘U’ ‘R’ <user name> ETX LRC

Attempt to sign on as the user <user name>. <user name> is purely for informational purposes
and can be freely chosen as any combination of printable characters (character codes $20 to
$7E). U.P.M.A.C.S. does not do any user name or password checking on uplink port sign on re-
quests.

▫ Response:

ACK <address> ‘U’ ETX LRC

The command will fail with the error message USR if someone with equal or higher privilege level
is already signed on.

Sign off

▫ Request:

STX <address> ‘U’ ‘-’ ETX LRC

Sign off.

▫ Response:

ACK <address> ‘U’ ETX LRC

The command will fail with the error message USR if no one is signed on from the uplink port on
which the request was received.

 Acknowledge Alarms Request
This request allows a remote system to acknowledge all alarms on all screens.

Opcode: ‘A’ (character code $41)

 Page 184

U.P.M.A.C.S. Developer’s Manual Appendix D: Uplink Port Protocol

 Page 185

▫ Request:

STX <address> ‘A’ ETX LRC

Acknowledges all alarms on all screens.

▫ Response:

ACK <address> ‘A’ ETX LRC

The command will fail with the error message USR if no one is signed on from the uplink port on
which the request was received, or if that uplink port does not have sufficient clearance to ac-
knowledge alarms.

U.P.M.A.C.S. Developer’s Manual Appendix E: Legacy Objects

Appendix E: Legacy Objects

Versions of U.P.M.A.C.S. prior to v6.0 used some database objects that are obsolete in v6.0.
These objects are called legacy objects. There are three types of legacy objects:

Serial Communications:

 Legacy data masks

 Legacy device drivers

Data Storage:

 Legacy parameters

Device drivers contain commands, responses, messages, and replies

There are also some capabilities of serial ports that relate to legacy devices, as well as a number
of sources for use with legacy devices and parameters.

To view legacy object lists, choose “Masks…”, “Device Drivers…”, or “Parameters…” from the
“Legacy Objects” section of the “View” menu. To create legacy objects, select “Mask…”, “Device
Driver…”, or “Parameter…” from the “Legacy Object” section of the “New” menu.

toggle legacy
device drivers

toggle
masks

toggle
legacy

parameters

new legacy
device driver

new
mask

new
legacy

parameter
Legacy Object Tool Bars

A station that contains legacy objects usually has a structure that looks something like this:

Register

Serial Port Device Driver

Data Mask

Data Mask

Data Mask

Source

Register

Source

Device

Device

Command

Command

Response

Response

Device Driver

Reply

Reply

Message

Message

Data Level

Serial
Communications
Level

Parameter

 Page 186

U.P.M.A.C.S. Developer’s Manual Appendix E: Legacy Objects

Legacy Device Serial Communication

Serial Communication Objects

A brief description of the legacy objects used for serial communications is given below. The ob-
jects are described in more detail in their respective sections.

 Legacy devices
A legacy device is a device that uses a legacy device driver, rather than a regular device driver.

 Legacy device drivers
Each legacy device in a port uses a legacy device driver to specify the behaviour of the equip-
ment. There is one legacy device driver for each type of equipment, but devices with the same
characteristics (make, model, serial address) share a device driver. Legacy device drivers do not
support parameters, so you must define a separate device driver for each device address. No two
legacy devices on the same port may share the same driver.

 Legacy commands
Each legacy device driver may contain a number of commands. A command contains a string of
characters or binary data that the equipment will understand, as well as information about the
response that the equipment sends. Legacy commands do not support parameters, so you must
define a separate command for each set of command parameters. Legacy commands do not
contain the information about the equipment’s response, they use responses (see below) for that
purpose.

 Legacy responses
Legacy device drivers may also contain a number of responses. Each response represents the
data sent by the equipment in response to a command. If the equipment sends the same data in
response to two separate commands, these commands share a response. Each legacy device in
a serial port that uses a specific driver contains one data buffer for each response in that driver.
Separate devices that use the same driver have separate data buffers, to hold the different re-
sponse data sent by their respective pieces of equipment.

 Legacy messages
Legacy device drivers may also contain a number of messages. Each message represents data
that the equipment may send out of its own accord, without having been polled. Each device in a
serial port that uses a specific driver contains one data buffer for each message in that driver.
Separate devices that use the same driver have separate data buffers, to hold the different mes-
sage data sent by their respective pieces of equipment.

 Legacy replies
Legacy device drivers may also contain a number of replies. A reply contains a string of charac-
ters or binary data that is sent in response to a message received by the equipment.

 Legacy data masks
Legacy data masks are used to specify what the data in a legacy response or message looks like.
The data for many different responses or messages in many different drivers could have the
same format, and many responses and messages from many different drivers may hence share a
data mask. Many pieces of equipment use Scientific Atlanta’s SABus protocol, for instance. In the
SABus protocol, all response data follows a fixed format. All responses in all device drivers for
equipment that supports SABus protocol can therefore share one single data mask. Data masks
are global objects and not tied to serial ports, devices, or device drivers.

The Polling Process

Most equipment never sends data out of its own accord, but only in response to a command.
U.P.M.A.C.S. will send commands to such equipment continuously, and evaluate the data re-
turned. Which commands are sent to what piece of equipment on the port in what order, is de-
termined by the polling sequence.

 Page 187

U.P.M.A.C.S. Developer’s Manual Appendix E: Legacy Objects

The polling sequence consists of a series of polls. Each poll in the polling sequence contains a
reference to a command in a device. The command, in turn, contains a reference to a response.
The response itself contains a reference to a data mask that describes the format of the response
data.

Each poll is executed as follows:

 Look up the command string in the command

 Send the string to the equipment

 Look up the format of the response data from the data mask of the command’s response

 Check the data received from the equipment against that format

 If the data is OK, place it in the device’s data buffer that corresponds to the response

 Evaluate the response data

Some commands may not have a response. For polls with such commands, only the first two
steps apply.

Serial Port Device Driver

Data Mask

Polling
sequence

Device

Command Response

StringPoll

Data MaskCommand Response

String
Poll

Data
Buffer

Pattern

Eq u i p m e n t
command path
response path
logical links between objects

Data
Buffer

look up command string send data
check
data

store data in buffer

evaluate data
in serial data sources and SCL programs

Pattern

Receiving Unsolicited Data

In some rare instances, a piece of equipment is designed to send data out of its own accord,
rather than as a response to a command. This type of data is called “unsolicited data.” You can
configure a port to wait for unsolicited data rather than poll the equipment.

Each possible chunk of data that the equipment can send is described by a message in the
equipment’s device driver. The message contains a reference to a data mask that describes the
data of the message, and a reference to a reply that will be sent in response to the message.

Unsolicited data is processed as follows:

 Wait for data to come in on the port

 Find a message whose data mask the data fits

 Place the data in the device’s data buffer that corresponds to the message

 Evaluate the message data

 Look up the reply string in the message’s reply

 Page 188

U.P.M.A.C.S. Developer’s Manual Appendix E: Legacy Objects

 Send the reply

Most messages will not have a reply. For such messages, only the first four steps apply.

As with response data, U.P.M.A.C.S. will automatically update all registers that take their value
from a message data buffer when a message is received. In addition, however, you can specify
an SCL program to do additional processing of the data, to send custom replies, or to perform
any actions that may be necessary as a result of message.

Serial Port Device Driver

Data Mask

Device

Reply Message

Data MaskReply Message

String

Data
Buffer

Pattern

Eq u i p m e n t
message path
reply path
logical links between objects

Data
Buffer

send data

look
for
match

store data in buffer

evaluate data
in serial data sources and SCL programs

Pattern
String

(no match)

Device Initialization

Legacy devices only have one type of initialization sequence. The initialization sequence is al-
ways used for the first-time initialization. It can optionally also be used for reinitialization. The ini-
tialization sequences for first-time initialization and reinitialization are always the same for legacy
devices

Port Access Synchronization

Although these synchronization mechanisms are available on any port, they are only meant to be
used on ports that use a polling sequence. Only commands and responses are synchronized,
messages and replies are not. On ports that wait for unsolicited data, the equipment, not
U.P.M.A.C.S., is the bus master (the device that decides who is allowed to send data), and you
should never send any data to such a port unless the equipment attached to it specifically re-
quested you to.

Designing Legacy Device Drivers

Step 1: Data Masks

You need to create a data mask for each type of response your equipment can have. Responses
for different commands, even for different equipment, can often share the same mask, as long as
they look similar and require the same timeout interval and buffer size.

You also need to create a data mask for every message your equipment might send. In theory,
different messages in the same device driver could have the same data mask, but in practice this
makes it impossible for U.P.M.A.C.S. to distinguish between the two messages, and it will pick
one at random when data matching that mask is received. Messages in different device drivers
can also have the same data mask, but if you use both devices on the same port, the same prob-

 Page 189

U.P.M.A.C.S. Developer’s Manual Appendix E: Legacy Objects

lem will occur. Make sure that all data masks used for messages on a single port are different
enough for U.P.M.A.C.S. to distinguish what data constitutes which message.

U.P.M.A.C.S. does not distinguish between data masks for responses and data masks for mes-
sages. You could theoretically use the same data mask for messages and responses, but since
the requirements for the two types of objects are very different, this is unlikely to be useful in real
life.

The mask contains a pattern that describes the character sequence of the response or message.
The pattern is a regular expression, a very versatile extended search string. The exact format of
U.P.M.A.C.S. regular expressions is discussed in Appendix A. For data masks used in re-
sponses, you can write an expression that matches the response data very closely, or you can
opt for a more flexible pattern. If you write a pattern that matches the response more closely, you
are likely to need a greater number of different data masks, but the responses will be checked
more thoroughly for correctness. Take some time to decide which responses you want to group
together to use a single mask, and which responses you want to separate. Make sure you have
acquainted yourself with regular expressions before doing so.

For data masks used in messages, you will usually want to write an expression that matches a
message as closely as possible, as message data masks cannot be reused in any case.

If possible, it is a good idea to design masks that recognize the beginning of a response or mes-
sage as well as the end. This will enable U.P.M.A.C.S. to eliminate garbage data coming in be-
fore the response data as well as after it.

Step 2: Device Drivers

You need to create a device driver for each type of equipment with which you want U.P.M.A.C.S.
to communicate. If you have equipment that supports daisy chaining on a single port, you should
write a separate driver for each device address. You can do this by writing the driver for the first
address, and duplicating it as needed. You can then modify the commands, responses, mes-
sages, and replies to reflect the different addresses.

Devices contain commands, responses, messages and replies. Commands and responses are
used for polling equipment; messages and replies are used for equipment that sends unsolicited
data. It is possible for a single device to contain all four types of objects, but in practice this is
unlikely to be useful, as equipment that sends unsolicited data cannot be polled. You will normally
find that drivers you develop will contain either commands and responses, or messages and re-
plies, but not both sets.

Since the device commands require the use of responses, you should create responses before
you create commands.

 Responses
You will need one response object for each response the equipment sends. If the equipment
sends the exact same data in response to two commands, you need only one response for it.
Some equipment, for example, responds with a value (e.g. the current frequency) both to the as-
sociated set and query commands. In such a case, you need only one response.

If two responses look alike, but contain different information, you will need separate responses
(they will share a data mask, however). You will need two separate responses for transmit and
receive data rates of a modem, for example, even if the data is formatted exactly alike. This is
necessary to tell the two pieces of information apart.

Many pieces of equipment send a generalized acknowledge response for all set commands. This
might be a simple OK packet that is always identical, or it might be a response that contains the
command opcode and possibly the data you sent. In this case, you will only need one response
to cover all commands, since the actual data is of no consequence.

Remember that you need a response every time the equipment sends data, even if you are not
planning to use the data for anything. U.P.M.A.C.S. uses the response to check the data that the
equipment returns, regardless of whether anything further is done with it. If you fail to provide a

 Page 190

U.P.M.A.C.S. Developer’s Manual Appendix E: Legacy Objects

response for a command that the equipment responds to, the data the equipment sends will re-
main in the computer’s hardware receive buffer and may cause erroneous behavior.

 Commands
You can now create the commands that U.P.M.A.C.S. will send to your equipment. The com-
mands defined here can only use fixed, pre-defined strings. You cannot dynamically specify any
parameters for the command.

If an equipment command has a parameter that can take a fixed number of values, define a sepa-
rate command for each of the values. A smart switch, e.g., might have a “set backup mode”
command, with a number as a parameter that represents “manual,” “revertive auto,” and “non-
revertive auto” modes. In that case, you cannot make one “set backup mode” command. Make
three separate commands, one for “set manual mode,” one for “set revertive auto mode,” and one
for “set non-revertive auto mode.”

If an equipment command has a parameter that can assume a continuous range of values, you
should not make a command for it. You should not make a “set frequency” command for a con-
verter, for example. Simply provide a response for the command, and construct the command on
the fly in the control that sets the frequency.

Since messages may require the use of replies, you should create replies before you create mes-
sages.

 Replies
Create a reply for each string that may need to be sent in response to a message from a device.

You can only create replies with a fixed string. If a message needs to send a reply that contains a
parameter that can assume a variable range of values, like a frequency or a time value, you
should not create a reply object for it. Such replies must be created on the fly in an SCL program.

If the reply to a message can take one of a small number of forms, define a reply for each variant
you want to use. An SCL program that processes a message can then send these predefined
replies, without having to construct them within the SCL code.

 Messages
You can now create messages for all the data that the equipment may send. You should use a
different data mask for each message, because the mask is used to determine which message is
received. If you use the same mask for more than one message, U.P.M.A.C.S. will not be able to
tell which message it is dealing with when it receives data that matches that mask, and it will sim-
ply pick one message at random.

A message can be assigned with a reply. The reply will be sent whenever the message is re-
ceived. You can only specify one reply for each message, and the reply can only contain a fixed
string. If the message can have one of several different replies under different circumstances, do
not assign a reply to the message. Instead, specify an SCL program to process messages when
you add the device to its serial a port, and let that program determine which reply should be sent
and send it. The program can either send any of the predefined replies you created, or it can cre-
ate one on the fly.

Step 3: Serial Ports

Define one serial port for every physical port to which equipment is connected. Add a device for
each piece of equipment on the port.

If the equipment attached to the port needs to be polled, you must configure the port to poll the
equipment. You can then specify the polling sequence. A port need not contain a polling se-
quence; if you do not create any polls, the port will simply remain idle until an SCL program sends
a command.

If the equipment on the port sends data out of its own accord, you must configure the port to wait
for unsolicited data. Since such ports rarely have more than one piece of equipment connected to
them, you will usually create only one device. If it is necessary or convenient, however, you can

 Page 191

U.P.M.A.C.S. Developer’s Manual Appendix E: Legacy Objects

create more than one device: just make sure that all messages in all devices use different masks,
or U.P.M.A.C.S. will not be able to distinguish between them.

For ports that wait for unsolicited data, you can also specify an SCL program to do additional
processing, or to perform necessary actions, when a message is received. You can either specify
single program to be used for all devices, or a separate program for each device.

Legacy Data Masks

A data mask provides information about the format of data that equipment sends in response to a
command or out of its own accord. Data masks are global objects that can be shared by multiple
responses and messages in multiple device drivers.

The data mask provides patterns to recognize valid data as well as error messages sent by the
equipment. Valid data is divided into three sections: A prefix, the data, and a suffix. Basically, the
data is all information that you are interested in, and the prefix and suffix are any synchronization
and housekeeping information that you want to discard.

If you are planning to use device drivers from a device driver library (see Device Driver Libraries
for details), you do not need to create data masks for them. All necessary data masks are im-
ported with the device drivers.

The New Data Mask Dialog

 Tag:
Enter the tag by which the mask is identified. Each mask must have a unique tag.

 Name:
Enter the name of the mask. Leave this field blank if you want to use the tag as name.

 Prefix:
Enter a regular expression for the response or message header here. Headers usually consist of
a synch byte, the device addresses, and sometimes a byte count and the command opcode.
U.P.M.A.C.S. will strip the prefix from the data before processing it. Leave this field blank if your
response or message has no header, or if you want to use a device driver-specific prefix. If you
specify a prefix in the device driver and in the data mask, the prefix of the data mask will be used.

See Appendix A: Regular Expressions on page 171 for details.

 Suffix:
Enter a regular expression for the response or message trailer here. Trailers usually consist of a
checksum and often a terminating character. U.P.M.A.C.S. will strip the suffix from the data be-
fore processing it. Leave this field blank if your response or message has no trailer, or if you want

 Page 192

U.P.M.A.C.S. Developer’s Manual Appendix E: Legacy Objects

to use a device driver-specific suffix. If you specify a suffix in the device driver and in the data
mask, the suffix of the data mask will be used.

See Appendix A: Regular Expressions on page 171 for details.

 Pattern:
Enter a regular expression for the response or message data here. You cannot leave this field
blank, as all responses and messages must have data. If a response or a message has no data,
but consist only of a header and a trailer, you have to treat part of the header or trailer as data.

See Appendix A: Regular Expressions on page 171 for details.

 Buffer size:
Enter the size of the data buffer here. The data buffer must be large enough to hold not only the
data, but also the prefix and the suffix. If the response or message has a fixed length, enter that
length here. If it has a variable length, enter a buffer size large enough to hold the largest possi-
ble response or message. If a response or a message is too long to fit in the buffer, U.P.M.A.C.S.
will not recognize it as valid, even if it is.

 Timeout:
This field is used differently for responses and messages.

For Responses, enter the maximum time the equipment is allowed to respond. If no valid re-
sponse has been received after the number of seconds specified, a timeout is reported.

For messages, enter the inter-character timeout. This is the maximum time the equipment is al-
lowed to wait between two characters in the same message. If no new characters are received
within this number of seconds, U.P.M.A.C.S. will assume that the equipment is done sending
data.

You can enter fractions of a second for the timeout.

 Error pattern:
Enter a regular expression by which an error response or error message sent by the equipment
can be recognized. If the equipment does not send error responses or messages, or if you want
to use a device driver-specific error format, leave this field blank. If you specify an error pattern in
the device driver and in the data mask, the error pattern of the data mask will be used.

The error pattern is not used in conjunction with the prefix or suffix. Include the error response
header and trailer in the error pattern.

Make sure that the error responses are distinguishable from valid responses. If an error response
fits the prefix, pattern, and suffix of the mask, it will be treated as data.

Legacy Device Drivers

A device driver provides information about the command set of a particular piece of equipment.
Identical pieces of equipment share a common device driver.

You can create device drivers from within the Development System, or you can import drivers
from a library. See Device Driver Libraries for details on creating and using device driver libraries.

 Page 193

U.P.M.A.C.S. Developer’s Manual Appendix E: Legacy Objects

The New Device Driver Dialog

 Tag:
Enter the tag by which the driver is identified. Each driver must have a unique tag.

 Name:
Enter the name of the device driver. Leave this field blank if you want to use the tag as name.

 Prefix:
Enter a regular expression for the response or message header here. Headers usually consist of
a synch byte, the device addresses, and sometimes a byte count and the command opcode.
U.P.M.A.C.S. will strip the prefix from the data before processing it. Leave this field blank if your
responses or messages have no header, or if you want to use a data mask-specific prefix. If you
specify a prefix in the device driver and in the data mask, the prefix of the data mask will be used.

See Appendix A: Regular Expressions on page 171 for details.

 Suffix:
Enter a regular expression for the response or message trailer here. Trailers usually consist of a
checksum and often a terminating character. U.P.M.A.C.S. will strip the suffix from the data be-
fore processing it. Leave this field blank if your responses or messages have no trailer, or if you
want to use a data mask-specific suffix. If you specify a suffix in the device driver and in the data
mask, the suffix of the data mask will be used.

See Appendix A: Regular Expressions on page 171 for details.

 Delay after commands with no response:
If a command has no response, U.P.M.A.C.S. will send the next command immediately after-
wards, without delay. Some equipment needs a small interval between commands to function
properly. If your equipment needs a delay after a command that it does not send a response for,
enter it here, in seconds. You can enter fractions of a second.

 Error pattern:
Enter a regular expression by which an error response or error message sent by the equipment
can be recognized. If the equipment does not send error responses or messages, or if you want
to use a data mask-specific error format, leave this field blank. If you specify an error pattern in
the device driver and in the data mask, the error pattern of the data mask will be used.

 Page 194

U.P.M.A.C.S. Developer’s Manual Appendix E: Legacy Objects

The error pattern is not used in conjunction with the prefix or suffix. Include the error response
header and trailer in the error pattern.

Make sure that the error responses are distinguishable from valid responses. If an error response
fits the prefix, pattern, and suffix of the mask, it will be treated as data.

See Appendix A: Regular Expressions on page 171 for details.

 Objects for polling/Objects for unsolicited data:
Use these tabs to view responses and commands, or messages and replies. This tab only affects
which objects are displayed, not which type of objects are contained in the device driver. You can
always have all four types of objects in the same device driver.

 Responses:
This box shows all the responses you have defined for the device driver. Use the buttons at the
bottom of the box to add, remove, and edit responses. See Responses for a description of the
New Response dialog. If the dialog shows messages instead of responses, click on “Objects for
polling” to view responses and commands.

 Commands:
This box shows all the commands you have defined for the device driver. Use the buttons at the
bottom of the box to add, remove, and edit commands. See Commands for a description of the
New Command dialog. If the dialog shows replies instead of commands, click on “Objects for poll-
ing” to view responses and commands.

 Messages (not shown):
This box shows all the messages you have defined for the device driver. Use the buttons at the
bottom of the box to add, remove, and edit messages. See Messages for a description of the
New Message dialog. If the dialog shows responses instead of messages, click on “Objects for
unsolicited data” to view messages and replies.

 Replies (not shown):
This box shows all the replies you have defined for the device driver. Use the buttons at the bot-
tom of the box to add, remove, and edit replies. See Replies for a description of the New reply
dialog. If the dialog shows commands instead of replies, click on “Objects for unsolicited data” to
view messages and replies.

 The “Replace…” button:
The device driver dialog incorporates search and replace functionality. To bring up the Search
And Replace dialog, press the “Replace…” button. See Search and Replace in Legacy Device
Drivers on page 214 for a description of the Search And Replace dialog.

 The “Checksum…” button:
Press this button to add a checksum to all command and reply strings, or to recalculate the
checksum for all command and reply strings. See Calculating Checksums on page 217 for a de-
scription of the Add/Change Checksum dialog.

Legacy Responses

Responses provide room for data received from the equipment in response to a command. Each
device creates a data buffer for each response in its driver. Device responses that look alike but
contain different data need separate responses.

The New Response Dialog

 Page 195

U.P.M.A.C.S. Developer’s Manual Appendix E: Legacy Objects

 Tag:
Enter the tag by which the response is identified. Each response and message in a driver must
have a unique tag. A response cannot have the same tag as another response or a message.

 Mask:
Select the data mask to use for this response.

Legacy Commands

Commands provide predefined command strings used for polling and controls. You need a com-
mand object for each separate string you want to send during the polling and initialization se-
quences. You should also provide additional commands for use in controls and for testing.

Commands always have a fixed data string that is sent. U.P.M.A.C.S. v5.5 does not support
commands with variable parameters. If you have a command that needs parameters, you must
either define a separate command object for each possible parameter value, or you must con-
struct the command on the fly in an SCL program. The latter option is only possible within con-
trols: The polling and initialization sequences only support pre-defined commands.

The New Command Dialog

 Tag:
Enter the tag by which the command is identified. Each command and reply in a driver must have
a unique tag. A command cannot have the same tag as another command or a reply.

 String:
Enter the data to be sent here. See Appendix B: Entering Binary Data on page 179 for details.

 Show as text, Show as hex:
Select the way you want to enter the command string. See Appendix B: Entering Binary Data on
page 179 for details.

 Response:
Select the response to use for this command. Select <none> if the equipment does not send data
in response to this command. Do not select <none> if the equipment sends data, even if you in-
tend to discard the data.

 The “LRC” button:
Press this button to add an LRC checksum to the command string. LRC stands for Longitudinal
Redundancy Check, and is calculated by XORing all the character codes in the string together.

 The “Modulo 256” button:
Press this button to add a modulo 256 checksum to the command string. This checksum is calcu-
lated by adding all the character codes in the string, and taking the sum modulo 256.

 The “Printable Chksm.” button:
This is a special checksum designed to produce a checksum that is always a printable character.
It is calculated as follows:

 Page 196

U.P.M.A.C.S. Developer’s Manual Appendix E: Legacy Objects

 Subtract 32 from each character code,

 add the results together,

 take the sum modulo 95,

 add 32 to the result.

This checksum is used, for example, by Miteq equipment.

Example:

To calculate the checksum for the string “Prometheus”, proceed as follows:

Subtract 32 from each character code:

Char: P r o m e t h e u s

Code: 80 114 111 109 101 116 104 101 117 115

-32 -32 -32 -32 -32 -32 -32 -32 -32 -32

result: 48 82 79 77 69 84 72 69 85 83

Add the results together:

48 + 82 + 79 + 77 + 69 + 84 + 72 + 69 + 85 + 83 = 748

Take the sum modulo 95:

748 mod 95 = 83

And add 32 to the result:

83 + 32 = 115 (“ s “)

Legacy Messages

Messages describe messages that the equipment might send to U.P.M.A.C.S. out of its own ac-
cord and provide room to store the data received. Each device creates a data buffer for each
message in its driver. Device messages that contain different data need separate message ob-
jects. Each message should use a different data mask to make it possible to determine which
message an incoming data block is.

The New Message Dialog

 Tag:
Enter the tag by which the message is identified. Each message and response in a driver must
have a unique tag. A message cannot have the same tag as another message or a response.

 Mask:
Select the data mask to use for this message.

 Reply:
Select the response to send in response to this message. Select <none> if the equipment does
not expect a reply to this message, or if you want to generate a dynamic reply using an SCL pro-
gram.

 Page 197

U.P.M.A.C.S. Developer’s Manual Appendix E: Legacy Objects

Legacy Replies

Replies provide predefined reply strings used to reply to messages.

Replies always have a fixed data string that is sent. U.P.M.A.C.S. v5.5 does not support replies
with variable parameters. If you have a reply that needs parameters, you must either define a
separate reply object for each possible parameter value, or you must construct the reply on the fly
in an SCL program. (You can specify an SCL program used to process incoming messages on a
port or device, and that program can send custom data in reply to a message. See Serial Ports
for details.)

The New Reply Dialog

 Tag:
Enter the tag by which the reply is identified. Each reply and command in a driver must have a
unique tag. A reply cannot have the same tag as another reply or a command.

 String:
Enter the data to be sent here. See Appendix B: Entering Binary Data on page 179 for details.

 Show as text, Show as hex:
Select the way you want to enter the reply string. See Appendix B: Entering Binary Data on page
179 for details.

 The “LRC” button:
Press this button to add an LRC checksum to the reply string. LRC stands for Longitudinal Re-
dundancy Check, and is calculated by XORing all the character codes in the string together.

 The “Modulo 256” button:
Press this button to add a modulo 256 checksum to the reply string. This checksum is calculated
by adding all the character codes in the string, and taking the sum modulo 256.

 The “Printable Chksm.” button:
This is a special checksum designed to produce a checksum that is always a printable character.
See The “Printable Chksm.” button on page 196 for details on printable checksums.

Serial Ports

Serial ports provide capabilities for triggering an SCL Program when a message is received.

 Page 198

U.P.M.A.C.S. Developer’s Manual Appendix E: Legacy Objects

The New Serial Port Dialog

The list below describes only those fields pertaining to the message control. For the remaining
fields, see Serial Ports on page 13.

 Receive message control:
This field is only enabled if the port is configured to wait for unsolicited data. You can select a
program here that will be executed every time a valid message is received on the port. The pro-
gram arguments are shown in parentheses after the name of the program, but you only select the
program from the lists, not the arguments. To change the arguments, use the “Args…” button.
See Specifying Arguments for SCL Programs for a description of the Edit Program Arguments
dialog.

You can use the control to decode the message and perform control actions depending on its
content, or to send custom replies to messages that require non-fixed data in the reply.

You can also specify a separate program for each device in the device’s configuration dialog. If
you specify a control in the port and a device, the device’s control will be used.

Legacy Devices

Devices provide information about a piece of equipment connected to a serial port. The device
specifies which driver to use, and how to initialize the equipment.

You can also specify automatic controls to be executed when the device is enabled or disabled.
Disabling a device from the Devices dialog in the Operate System or from an SCL program auto-
matically masks all registers associated with the device, but it is sometimes necessary to perform
additional maintenance or to mask additional registers. The automatic controls allow you to do
this.

 Page 199

U.P.M.A.C.S. Developer’s Manual Appendix E: Legacy Objects

The New Device Dialog

 Driver:
Select the device driver that the device uses. Drivers that are already used by devices in the port
do not appear in the list. If you change the driver, all polls of the initialization sequence that use
commands with names that don’t exist in the new driver will be removed. You can only change
the driver when creating a new device, not when you are configuring an existing one.

 Description:
Enter a description by which the user can recognize the device. This will usually be something
like “Modem 1” or “UPS”. Make sure all devices on all ports have different descriptions.

 Reinitialize after timeout:
Check this box if you want U.P.M.A.C.S. to re-send the initialization sequence every time the de-
vice times out. If the device does not have an initialization sequence, this check box is ignored.

The initialization sequence is not sent immediately after a timeout. U.P.M.A.C.S. will send the
initialization sequence before the next time the polling sequence is started.

 Timeout tolerance:
Enter the number of consecutive timeouts to ignore here. If your equipment times out sporadi-
cally, but you do not want all of these timeouts to be reported, enter the number of timeouts you
allow here. If you enter 3, e.g., the device has to time out four times in a row for a timeout to be
reported.

 Initialization sequence:
This field is only enabled if the serial port is configured to poll equipment, rather than wait for un-
solicited data. It shows the sequence of commands used to initialize the equipment. Use the but-
tons in the box to add, remove, and edit polls. The polls will be sent in the order shown. You can
change the order of the polls by grabbing them with the mouse and dragging them to a new posi-
tion.

See The New Initialization Command Dialog for a description of the New Initialization Command
dialog.

 Controls:
Select the automatic controls for enabling and disabling the device here, as well as the receive
message control for ports that wait for unsolicited data. The program arguments are shown in
parentheses after the names of the programs, but you only select the programs from the lists, not

 Page 200

U.P.M.A.C.S. Developer’s Manual Appendix E: Legacy Objects

the arguments. To change the arguments, use the “Args…” buttons. See Specifying Arguments
for SCL Programs for a description of the Edit Program Arguments dialog.

Disable device:
Select the SCL program to be executed when the device is disabled. This control is also executed
on startup if the device is initially disabled.

Enable device:
Select the SCL program to be executed when the device is enabled. This control is not executed
on startup if the device is initially enabled.

Receive message:
This field is only enabled if the serial port is configured to wait for unsolicited data, rather than for
polling the equipment. You can select a program here that will be executed every time a valid
message is received from the device. You can use the control to decode the message and per-
form control actions depending on its content, or to send custom replies to messages that require
non-fixed data in the reply.

You can also specify a global program to be used for all devices in the New Serial Port dialog. If
you specify a control in the device and the serial port, the device’s control will be used.

Legacy Sources

Types of Legacy Sources

There are two types of legacy source that all registers share:

 Legacy device processor sources

 Legacy parameter sources

Bistate registers can have the following additional source types:

 Legacy device bit mask sources

 Legacy device search string sources

Digital registers can have the following additional source types:

 Legacy device direct sources

 Legacy device thresholds sources

 Legacy device strings sources

 Legacy device bit collection sources

Analog registers can have the following additional source type:

 Legacy device level sources

String registers can have the following additional source types:

 Legacy device literal sources

 Page 201

U.P.M.A.C.S. Developer’s Manual Appendix E: Legacy Objects

 Legacy device filter sources

All of the sources except for legacy parameter sources use data from a response or message
buffer of a device on a serial port. You can specify which part of the data is to be used, and how.

Specifying the Relevant Part of the Serial Data

There are two ways in which to specify the part of the data that you wish to use.

 Using an offset from the beginning of the data:
You can specify a byte offset from the beginning of the data buffer. The section of the data used
by the source will begin a fixed number of bytes from the beginning of the data. Use this method if
you know how many bytes from the beginning of the data you are interested in is located.

 Using a search key:
You can use a search key to specify the beginning of the relevant part of the data. The section of
the data used by the source will begin a fixed number of bytes before or after the end of the first
occurrence of the search key in the data. Use this method if the data in the response or message
is variable length and separated by separators, like spaces or commas. You can also use this
method if the data is preceded by some character or characters: a piece of equipment might mark
the position of a frequency with the letter F, for example.

If you know how many bytes the data you are interested in occupies, you can also specify a
length. If you do not specify a length, the section of data used extends to the end of the available
data. In certain cases, you will have to specify a fixed length.

Numerical Data Types

If the source has to translate the data into a number, you can choose one of the following transla-
tion methods:

Byte (unsigned):
This type requires a fixed length of 1 byte. The byte value is interpreted as an unsigned number
ranging from 0 to 255.

Byte (signed):
This type requires a fixed length of 1 byte. The byte value is interpreted as an signed number
ranging from -128 to 127.

Multibyte (lo-hi, unsigned):
This type requires a fixed length of 2, 3, or 4. The bytes are interpreted as a 16, 24, or 32 bit un-
signed number using the first byte as the least significant byte (low byte), and the last byte as the
most significant byte (high byte). The resulting number ranges are as follows:

 2 bytes: 0 to 65,535

 3 bytes: 0 to 16,777,215

 4 bytes: 0 to 4,294,967,295

Multibyte (lo-hi, signed):
This type requires a fixed length of 2, 3, or 4. The bytes are interpreted as a 16, 24, or 32 bit
signed number using the first byte as the least significant byte (low byte), and the last byte as the
most significant byte (high byte). The resulting number ranges are as follows:

 2 bytes: -32,768 to 32,767

 3 bytes: -8,388,608 to 8,388,607

 Page 202

U.P.M.A.C.S. Developer’s Manual Appendix E: Legacy Objects

 4 bytes: -2,147,483,648 to 2,147,483,648

Multibyte (hi-lo, unsigned):
This type requires a fixed length of 2, 3, or 4. The bytes are interpreted as a 16, 24, or 32 bit un-
signed number using the first byte as the most significant byte (high byte), and the last byte as
the least significant byte (low byte). The resulting number ranges are as follows:

 2 bytes: 0 to 65,535

 3 bytes: 0 to 16,777,215

 4 bytes: 0 to 4,294,967,295

Multibyte (hi-lo, signed):
This type requires a fixed length of 2, 3, or 4. The bytes are interpreted as a 16, 24, or 32 bit
signed number using the first byte as the most significant byte (high byte), and the last byte as
the least significant byte (low byte). The resulting number ranges are as follows:

 2 bytes: -32,768 to 32,767

 3 bytes: -8,388,608 to 8,388,607

 4 bytes: -2,147,483,648 to 2,147,483,648

BCD:
This type requires a fixed length. The data is interpreted as a Binary Coded Decimal number. In
binary coded decimal, each nibble (hex digit) in a byte represents one decimal digit. Four bytes of
data containing the following four byte values:

$20 $34 $00 $50

represents the number 20,340,050.

Decimal:
This type interprets the data as a number written out in base 10 as a series of the ASCII charac-
ters “0” to “9”. Leading spaces will be ignored, as will any characters that appear after the num-
ber.

Hexadecimal:
This type interprets the data as a number written out in base 16 as a series of the ASCII charac-
ters “0” to “9” and “A” to “F” or “a” to “f”. Leading spaces will be ignored, as will any characters
that appear after the number.

Binary:
This type interprets the data as a number written out in base 2 as a series of the ASCII characters
“0” and “1”. Leading spaces will be ignored, as will any characters that appear after the number.

Octal:
This type interprets the data as a number written out in base 8 as a series of the ASCII characters
“0” to “7”. Leading spaces will be ignored, as will any characters that appear after the number.

The Legacy Device Serial Data Source Dialogs

The Source dialogs for sources that use serial data share the following fields:

 Page 203

U.P.M.A.C.S. Developer’s Manual Appendix E: Legacy Objects

The list below describes only those fields that all the dialogs have. For the remaining fields, see
the section on the appropriate source.

 Port:
Select the serial port to which the device is attached.

 Device:
Select the device.

 Data buffer:
Select the response or message whose data you wish to use.

 Use search key:
Check the check box if you want to use a search key. If you check this box, the offset will be cal-
culated from the end of the first match for the search key. Enter a regular expression for the key
into the entry field.

See Appendix A: Regular Expressions on page 171 for details.

 Offset:
Enter the zero-based offset of the data within the buffer. If you did not specify a search key, the
offset is calculated from the beginning of the buffer. If you specified a search key, the offset is
calculated from the end of the first match for the search key.

If the data you are interested in is right at the beginning of the buffer, or right after the search key,
enter 0.

If there are n bytes between the beginning of the buffer or end of the search key and the data,
enter n.

If the data includes the last n bytes of the search key, enter -n.

Note: If you do not specify a search key, the offset is calculated from the beginning of the re-
sponse or message data, not the beginning of the prefix. The prefix and suffix are stripped from a
response or message before any processing is done.

 Fixed length:
Check this box if you know the length of the data, in bytes. Enter the number of bytes in the entry
field.

If you selected either of the Byte data types you must specify a length of 1. If you selected one of
the Multibyte data types, you must specify a length of 2, 3, or 4. If you selected BCD as data type,
you must specify a length, but the length can be anything.

If you selected any other data type, or if the source does not use data types, and you do not
specify a length, the data will be assumed to extend to the end of the response.

Since the Decimal, Hexadecimal, Octal, and Binary data types ignore any characters that appear
after the number, it is not necessary to specify a length if the number is followed by a terminating
character. If, however, the number is followed immediately by something that may be interpreted
as an ASCII digit, you must specify a length.

 Data type:
Not all of the Serial Data Source dialogs have this field. The Processor Source dialog, the Search
String Source dialog, the Strings Source dialog, the Literal Source dialog, and the Filter Source
dialog do not have this field.

 Page 204

U.P.M.A.C.S. Developer’s Manual Appendix E: Legacy Objects

Select the data type here. See Numerical Data Types on page 202 for details.

Legacy Device Processor Sources

Legacy device processor sources take information from a response data buffer in a serial device.
You have to provide an SCL program to decode the data. See Programs for Sources, Check-
sums, and SABus Response Data in the SCL Programming Language Help for details.

If the response buffer does not contain data because of a timeout, the register will go into its error
state.

If the device that the information comes from is disabled, or if all commands that use the re-
sponse specified are disabled, the register will be auto masked.

Use legacy device processor sources for registers whose value comes from data in a legacy re-
sponse, but none of the other legacy device sources types can be used to interpret the data.

The Processor Source Dialog

The list below describes only those fields that are specific to the Processor Source dialog. For the
remaining fields, see The Legacy Device Serial Data Source Dialogs.

 Program:
Select the SCL program that is to do the evaluation of the data. The program arguments are
shown in parentheses after the name of the program, but you only select the program from the
lists, not the arguments. To change the arguments, use the “Arguments…” button. See Specifying
Arguments for SCL Programs for a description of the Edit Program Arguments dialog.

Legacy Parameter Sources

Legacy parameter sources take information from a legacy parameter. The value of the register
will be determined as follows:

 Bistate registers:
The register will be in the ON state if the parameter’s value is “ON”. The register will be in the
OFF state if the value is “OFF”. Any other value will cause the register to go into the error state.
The comparison is not case sensitive, i.e. “On”, “on”, and “oN” will also cause the register to go
into its ON state.

 Digital registers:
If the value of the register contains a number within the range of digital registers, the register’s
value will be set to that number. Otherwise, the register will go into its error state.

The number can either be a decimal number, a hexadecimal number prefixed with “$”, an octal
number prefixed with “&”, or a binary number prefixed with “%”.

 Page 205

U.P.M.A.C.S. Developer’s Manual Appendix E: Legacy Objects

 Analog registers:
If the value of the register contains a number written out in decimal format, the register’s value will
be set to that number. Otherwise, the register will go into its error state.

 String registers:
The register will contain the value of the parameter.

Use legacy parameter sources for registers that represent a value maintained by U.P.M.A.C.S.
internally, and that must remain unchanged if U.P.M.A.C.S. is restarted.

The Parameter Source Dialog

 Parameter:
Select the parameter to use.

Legacy Device Bit Mask Sources

Legacy device bit mask sources are just like regular bit mask sources, except that they use data
from a legacy response or message.

The Bit Mask Source Dialog

The list below describes only those fields that are specific to the Processor Source dialog. For the
remaining fields, see The Legacy Device Serial Data Source Dialogs.

 XOR mask:
Select the bits you want to invert. The least significant bit and byte are shown on the right. Black
bits will be inverted; white bits will not be inverted. Click on a bit to toggle it, click on the byte
number above the bits to set or clear all the bits in that byte.

 AND mask:
Select the bits you want to use. The least significant bit and byte are shown on the right. Black
bits will be used; white bits will be masked out to 0s. Click on a bit to toggle it, click on the byte
number above the bits to set or clear all the bits in that byte.

 Page 206

U.P.M.A.C.S. Developer’s Manual Appendix E: Legacy Objects

 Polarity:
Select the polarity of the register. An alarm can either be triggered by any result greater than 0
(normal polarity), or by the result 0 only (inverted polarity).

Legacy Device Search String Sources

Registers with legacy device search string sources are set to the ON or OFF state depending on
whether a regular expression was found in the data section or not.

Use legacy device search string sources to implement alarms that are triggered or cleared when
data sent by a piece of equipment contains certain keywords. This is useful, for example, for
equipment that returns a string listing all currently active fault conditions.

The Search String Source Dialog

The list below describes only those fields that are specific to the Search String Source dialog. For
the remaining fields, see The Legacy Device Serial Data Source Dialogs.

 Search for:
Enter the regular expression to search for.

See Appendix A: Regular Expressions on page 171 for details.

 Polarity:
Select the polarity of the register. An alarm can either be triggered if the regular expression is
found (normal polarity), or if it is not found (inverted polarity).

Legacy Device Direct Sources

Legacy device direct sources use a number extracted from a response or message as the value
of a digital register. Use legacy device direct sources for digital registers whose value appears as
is in a response or message.

You can also specify a value map for the source. Sometimes, you want the register to have dif-
ferent values from the number extracted from the buffer. Other times, different values in the buffer
correspond to the same register value. A value map will allow you to substitute other values for
values calculated by the source. Normally, the result of the calculation described above is used
directly as the value of the register. If the result is 2, the value of the register will also be 2. If,
however, you would prefer the value of the register to be 4 if the result is 2, then you could spec-
ify a value map that maps a source value of 2 to a register value of 4. You can specify register
values to be substituted for any number of source values.

 Page 207

U.P.M.A.C.S. Developer’s Manual Appendix E: Legacy Objects

The Direct Source Dialog

The Direct Source dialog contains only the fields common to all serial data Source dialogs. See
The Legacy Device Serial Data Source Dialogs for details on the fields of this dialog.

 The “Value Map” button:
Click this button to edit the value map. The value map allows you to substitute different values for
the values extracted from the response.

Legacy Device Thresholds Sources

Legacy device thresholds sources are just like regular thresholds sources, except that they use
data from a legacy response or message.

The Thresholds Source Dialog

The list below describes only those fields that are specific to the Thresholds Source dialog. For
the remaining fields, see The Legacy Device Serial Data Source Dialogs.

 Bottom value:
Enter the value that the register should take if the number lies below any of the thresholds.

 Thresholds:
Lists all the thresholds and their corresponding values. Use the buttons to add, remove, or modify
thresholds and their values.

 Page 208

U.P.M.A.C.S. Developer’s Manual Appendix E: Legacy Objects

Legacy Device Strings Sources

Legacy Device Strings sources translate the data section into a value for a digital register using a
set of regular expressions, called “triggers.” If the data matches one of the triggers, the register’s
value is set to the value with which it is associated. If none of the triggers match, the register goes
into the error state.

Use legacy device strings sources for registers whose value reflects a set of states that are rep-
resented by different strings in a response or message.

The Strings Source Dialog

The list below describes only those fields that are specific to the Strings Source dialog. For the
remaining fields, see The Legacy Device Serial Data Source Dialogs.

 Triggers:
Lists all the possible values and the regular expressions that trigger them. The register will as-
sume the first value whose regular expression matches the data.

See Appendix A: Regular Expressions on page 171 for details.

Use the buttons to create, delete, and edit the expressions. Use the “Duplicate…” button to dupli-
cate the selected trigger.

Legacy Device Bit Collection Sources

Legacy device bit collection sources are just like regular bit collection sources, except that their
bit sections use legacy devices.

 Page 209

U.P.M.A.C.S. Developer’s Manual Appendix E: Legacy Objects

The Bit Collection Source Dialog

 Sections:
Lists the commands, rotate values, and XOR and AND masks of all the sections. Use the buttons
to create, delete, or edit sections. Use the “Duplicate…” button to duplicate the selected section.

See Legacy Device Bit Sections below for a description of the New Bit Section dialog.

 XOR mask:
Select the bits you want to invert. The least significant bit and byte are shown on the right. Black
bits will be inverted; white bits will not be inverted. Click on a bit to toggle it, click on the byte
number above the bits to set or clear all the bits in that byte.

 The “Value Map” button:
Click this button to edit the value map. The value map allows you to substitute different values for
the values calculated by the source.

Legacy Device Bit Sections

Legacy device bit sections are just like regular bit sections, except that they use data from a leg-
acy response or message.

 Page 210

U.P.M.A.C.S. Developer’s Manual Appendix E: Legacy Objects

The Bit Section Dialog

Although legacy device bit sections are not sources in themselves, but elements of a legacy de-
vice bit collection source, the Bit Section dialog has all the fields that you would find in a Legacy
Device Serial Data Source dialog. The list below describes only those fields that are specific to
the Bit Section dialog. For a description of the remaining fields, see The Legacy Device Serial
Data Source Dialogs.

 Rotate bits:

Specify the number of bits to rotate to the left or right. Press the arrows on the top right until
the bits align the way you would like them.

 XOR mask:
Select the bits you want to invert. The least significant bit and byte are shown on the right. Black
bits will be inverted; white bits will not be inverted. Click on a bit to toggle it, click on the byte
number above the bits to set or clear all the bits in that byte. The masks are applied after the bit
rotation.

 AND mask:
Select the bits you want to use. The least significant bit and byte are shown on the right. Black
bits will be used; white bits will be masked out to 0s. Click on a bit to toggle it, click on the byte
number above the bits to set or clear all the bits in that byte. The masks are applied after the bit
rotation.

Legacy Device Level Sources

Legacy device level sources use a number extracted from a data buffer as the value of an analog
register. The decimal data type for level sources supports decimal points and exponent notation.
You can provide a factor and an offset for the value. The value of the register is calculated from
the number extracted from the buffer as follows:

 Page 211

U.P.M.A.C.S. Developer’s Manual Appendix E: Legacy Objects

value = number · factor + offset

To use the number unaltered, specify a factor of 1 and an offset of 0.

Use legacy device level sources for analog registers whose value appears as is in a legacy re-
sponse or message.

The Level Source Dialog

The list below describes only those fields that are specific to the Level Source dialog. For the re-
maining fields, see The Legacy Device Serial Data Source Dialogs.

 Value factor:
Enter the factor with which the number from the buffer is to be multiplied before writing it to the
register. The value factor is applied before the value offset.

 Value offset:
Enter the offset that is to be added to the number from the buffer before writing it to the register.
The value offset is applied after the value factor.

Legacy Device Literal Sources

Legact device literal sources use the data section from the data buffer as the value of the string
register. Use legacy device literal sources for string registers whose value appears as is in a leg-
acy response or message.

The Literal Source Dialog

The Literal Source dialog contains only the fields common to all serial data Source dialogs. See
The Legacy Device Serial Data Source Dialogs for details on the fields of this dialog.

 Page 212

U.P.M.A.C.S. Developer’s Manual Appendix E: Legacy Objects

Legacy Device Filter Sources

Legacy device filter sources are just like regular filter sources, except that they use data from a
legacy response or message.

The Filter Source Dialog

The list below describes only those fields that are specific to the Filter Source dialog. For the re-
maining fields, see The Legacy Device Serial Data Source Dialogs.

 Allowed strings:
Lists regular expressions describing patterns that the data must match. The value of the register
will only be changed if the data matches one of the allowed strings.

See Appendix A: Regular Expressions on page 171 for details.

Use the buttons to create, delete, and edit the expressions.

Legacy Parameters

Legacy parameters contain persistent data, that is data that will be remembered from one launch
of U.P.M.A.C.S. to the next, is stored in parameters. Parameters have very limited functionality in
themselves, and are meant to be used by SCL programs and by registers with legacy parameter
sources.

A parameter contains arbitrary data. The first time a station file is used on a particular computer,
the parameter is initialized to a default value. After that, the value of the parameter will remain the
same across launches of U.P.M.A.C.S.

The New Parameter Dialog

 Page 213

U.P.M.A.C.S. Developer’s Manual Appendix E: Legacy Objects

 Tag:
Enter the tag by which the parameter is identified. Each parameter must have a unique tag.

 Name:
Enter the name of the parameter. Leave this field blank if you want to use the tag as name.

 Default value:
Enter the value that the parameter should have when the station file is used for the first time.

 Show as text, Show as hex:
Select the way you want to enter the default value. See Appendix B: Entering Binary Data on
page 179 for details.

Search and Replace in Legacy Device Drivers

The New Device Driver dialog incorporates search and replace capabilities. To pop up the Search
And Replace dialog, press the “Search…” button. The dialog enables you to change the device
address, perform a search and replace in all command and reply strings, replace one response or
reply with another, or replace one data mask with another.

The Search And Replace Dialog

The Search And Replace dialog has five pages that allow you to do different kind of replace-
ments. The pages are described in detail below. To show a particular page, click on the corre-
sponding tab at the top of the dialog.

 The “Replace All” button:
Press this button to perform the replacement you specified in the current tab for all the com-
mands, responses, messages, or replies.

 The “Close” button:
Press this button to close the Search And Replace dialog.

The Device Address Page

This page allows you to replace the device address in the command and reply strings. The ad-
dress will replace whatever bytes happen to be at the position you indicate. The address will re-
place as many bytes as it is long.

 New address:
Enter the new address here. See Appendix B: Entering Binary Data on page 179 for details.

 Show as text, Show as hex:
Select the way you want to enter the address. See Appendix B: Entering Binary Data on page
179 for details.

 Page 214

U.P.M.A.C.S. Developer’s Manual Appendix E: Legacy Objects

 Place Address … bytes from the beginning:
Enter the number of bytes that appear before the address. If there is one synch byte and one byte
count byte, for example, enter 2. If the address is at the beginning of the string, enter 0.

Example:

If you enter 1 in the Place "Place Address ... bytes from the beginning"
field, and the address is "12" (2 characters long), then it will replace
characters number 2 and 3 in every command:

{ 01 Status}

will become:

{ 12 Status}

The String Page

This page allows you to replace a series of characters in the command and reply strings.

 Search for:
Enter the string to search for. See Appendix B: Entering Binary Data on page 179 for details.

 Replace with:
Enter the string with which to replace the search string. See Appendix B: Entering Binary Data on
page 179 for details.

 Show as text, Show as hex:
Select the way you want to enter the strings. See Appendix B: Entering Binary Data on page 179
for details.

 Replace only the first occurrence:
Check this box if you want to replace the search string only once per command or reply. If you do
not check this box, the search string will be replaced multiple times within the same string, if it
occurs more than once.

 Page 215

U.P.M.A.C.S. Developer’s Manual Appendix E: Legacy Objects

Example:

If you search for "01" to be replaced with "15", then the string

{ 01 Read Channel 01}

will become, if you leave the box blank:

{ 15 Read Channel 15}

if you check the box:

{ 15 Read Channel 01}

The Response Page

This page allows you to change all commands that use a specific response to use another re-
sponse instead.

 Search for:
Enter the response to be replaced here. If you select <none>, the new response will be used by
all commands that do not currently use a response.

 Replace with:
Enter the new response here. If you select <none>, the commands will be changed to use no re-
sponse.

The Mask Page

This page allows you to change all responses and messages that use a specific data mask to use
another mask instead.

 Page 216

U.P.M.A.C.S. Developer’s Manual Appendix E: Legacy Objects

 Search for:
Enter the data mask to be replaced here.

 Replace with:
Enter the new data mask here.

The Reply Page

This page allows you to change all messages that use a specific reply to use another reply in-
stead.

 Search for:
Enter the reply to be replaced here. If you select <none>, the new reply will be used by all mes-
sages that do not currently use a reply.

 Replace with:
Enter the new reply here. If you select <none>, the messages will be changed to use no reply.

Calculating Checksums

The New Device Driver dialog allows you to add or recalculate a checksum for all the commands
and replies in the driver simultaneously. To pop up the Add/Change Checksum dialog, press the
“Checksum…” button.

The Add/Change Checksum Dialog

 Type of Checksum:
Select the type of checksum here. See The New Command Dialog on page 196 for a description
of the different types of checksums.

 Replace checksum … bytes from the end:
If you check this check box, an existing checksum will be recalculated. Enter the number of bytes
that come after the checksum in the entry field. If the checksum you wish to recalculate is the last
byte in the string, enter 0.

 Page 217

U.P.M.A.C.S. Developer’s Manual Appendix E: Legacy Objects

To add a checksum to the end, leave the check box blank.

 Exclude the first … bytes:
Check this checkbox if the checksum does not include all the characters in the command or reply
string. Specify the number of bytes to exclude from the beginning. (All bytes that come after the
checksum are excluded whether you check this box or not.)

 The “Add/Change” button:
Press this button to apply the changes you specified to all command and reply strings in the
driver.

 The “Close” button:
Press this button to close the Add/Change Checksum dialog.

Batch Processing of Registers

The Modify/Duplicate Registers dialog provides capabilities for modifying legacy device data
sources.

The Modify/Duplicate Registers Dialog

The list below describes only those fields pertaining to legacy device data sources. For the re-
maining fields, see Batch Processing of Registers on page 145.

 The "Apply changes to" rectangle (not shown):
You can select the following option for legacy parameter sources:

Parameters in parameter sources (not shown):
Change the legacy parameters used by any legacy parameter sources. If the tag of any parame-
ter used by a source contains the search text, the search text is replaced with the replace text to
create a new tag. The source is modified to use the parameter that has the new tag instead.

 Change serial objects and device data buffers in sources:
Check this box to change any legacy device responses and messages used by legacy device
serial data sources. Specify a search and replace string for the data buffer’s tag in the “Find” and
“Replace with” fields below.

Find:
Enter the search text here. The search text in the tag of the original data buffer is replaced with
the replace text to create a new tag. The source is modified to use the data buffer that has the
new tag instead.

 Page 218

U.P.M.A.C.S. Developer’s Manual Appendix E: Legacy Objects

Replace with:
Enter the replace text here. The search text in the tag of the original data buffer is replaced with
the replace text to create a new tag. The source is modified to use the data buffer that has the
new tag instead.

Match case:
Check this box to find only text that matches the capitalization of the search string. If you leave
this box blank, upper and lower case letters are treated the same when searching for the search
text.

Whole word:
Check this box to look only for complete words when searching for the search text. If you leave
this box blank, the Development System will search for partial words as well as entire words.

 Change device data buffer offsets in sources:
Check this box to modify the offset values in sources that use serial data from a device data
buffer. See Specifying the Relevant Part of the Serial Data for details on the offsets.

Data buffer:
Enter the name of the data buffer for which offsets should be changed. The name must be an
exact match.

Add … to offsets greater than or equal to:
Enter the number to add to the offset (negative to subtract), and the minimum offset value that
should be changed. No offset smaller than the minimum will be changed. Enter a minimum of 0 to
change all offsets.

Batch Processing of Parameters

The U.P.M.A.C.S. Development System supports modifying, duplicating and deleting multiple
parameters in one operation. To manipulate batches of parameters, select “Modify/Duplicate Pa-
rameters…” from the “Special” menu.

The Modify/Duplicate Parameters dialog will appear. There are four things you can do with this
dialog:

 Finding tags:
You can find and select all parameters whose tag contains a certain search text. Enter the text in
the “Find” field and press the “Find All Tags” button.

 Modifying parameters:
You can modify certain properties of all selected parameters. Specify the changes you wish to
make using the fields of the dialog, and press the “Replace All” button.

 Duplicating parameters:
You can make modified duplicates of all selected parameters. Specify the changes you wish to
make using the fields of the dialog, and press the “Duplicate” button.

 Deleting parameters:
You can delete all selected parameters by pressing the “Delete All” button.

 Page 219

U.P.M.A.C.S. Developer’s Manual Appendix E: Legacy Objects

The Modify/Duplicate Parameters Dialog

 Parameters:
Select the parameters that you want to process. To select multiple parameters, click while holding
down the Shift or Ctrl key.

The list shows both name and tag of the parameter. You can resize the two columns by dragging
the edges of the column headers with the mouse. Click on the “Name” header to sort the parame-
ters by name, click on the “Tag” header to sort them by tag.

 Find:
Enter the search text here. The search text is used for finding tags, and for modifying and dupli-
cating parameters. When modifying or duplicating parameters, the search text is replaced with
the replace text for everything specified in the “Apply changes to” rectangle. In addition, if you are
duplicating parameters, the search text in the tag of the original parameter is replaced with the
replace text to create the tag of the new parameter. This means that the tags of all parameters
you wish to duplicate must contain the search text.

 Replace:
Enter the text with which you want to replace the search text here. The replace text is used for
modifying and duplicating parameters. When modifying or duplicating parameters, the search text
is replaced with the replace text for everything specified in the “Apply changes to” rectangle. In
addition, if you are duplicating parameters, the search text in the tag of the original parameter is
replaced with the replace text to create the tag of the new parameter.

 Match case:
Check this box to find only text that matches the capitalization of the search text. If you leave this
box blank, upper and lower case letters are treated the same when searching for the search text.

 Whole word:
Check this box to look only for complete words when searching for the search text. If you leave
this box blank, the Development System will search for partial words as well as entire words.

 The “Apply changes to” rectangle:
When modifying or duplicating parameters, the search text is replaced with the replace text for
everything that you specify in this box. You can select any number of the following options:

Names:
Change the name of the parameter. If you are duplicating parameters, and you do not check this
box, the new parameters will have the same name as the originals, and you will have a hard time
telling them apart. This box should usually be checked when duplicating parameters.

Default values:
Change the default value of the parameter.

 Page 220

U.P.M.A.C.S. Developer’s Manual Appendix E: Legacy Objects

 Page 221

 The “Find All Tags” button:
Press this button to select all parameters whose tags contain the search text.

 The “Replace All” button:
Press this button to apply the changes you specified to all selected parameters.

 The “Duplicate” button:
Press this button to create modified duplicates of all selected parameters. The tags of the new
parameters will be created by replacing the search string in the original parameter’s tag with the
replace string. For that reason, the tag of all parameters you are duplicating must contain the
search text.

All changes you specified in the dialog will be applied to the new parameters. If you did not check
the “Names” box in the “Apply changes to” rectangle, the new parameters will have the same
name as the old ones, and it will be difficult to tell them apart. You should usually check the
“Names” box.

 The “Delete All” button:
Press this button to delete all selected parameters.

 The “Close” button:
Press this button to close the Modify/Duplicate Parameters dialog.

Developing U.P.M.A.C.S. Device Drivers Contact Information

CONTACT INFORMATION

U.P.M.A.C.S. Communications Inc.

714 36th Avenue, Suite 301
Lachine, Québec
Canada
H8T 3L8

Tel: 1-514-697-5500
Toll free: 1-877-697-5500 (Canada & US only)
E-Mail: support@upmacs.com

UPMACS is on the Web at http://www.upmacs.com

This manual and the U.P.M.A.C.S. software package are
©2012 by UPMACS Communications Inc.

 Page 222

mailto:support@upmacs.com
http://www.upmacs.com/

	Table of Contents
	The U.P.M.A.C.S. Development System
	Introduction

	How U.P.M.A.C.S. Works
	Structure of an U.P.M.A.C.S. Station
	Serial Communication
	Serial Communication Objects
	 Serial Ports
	 The Polling Sequence
	 Devices
	 The Device Initialization Sequence
	 Device Drivers
	 Commands
	 Data Objects
	The Polling Process
	Port Access Synchronization

	Storage and Processing of Information
	Registers
	 Bistate registers
	 Digital registers
	 Analog registers
	 String registers
	Sources
	SCL Programs

	User Interface
	Screens
	Static Objects
	Indicators
	Controls
	Labels

	Uplink Port Communications
	Queries
	Commands

	Designing an U.P.M.A.C.S. Station
	Step 1: Device Drivers
	Step 2: Serial Ports
	Step 3: Registers
	Step 4: SCL Programs for Controls and SABus Commands
	Step 5: Screens
	Step 6: SABus Requests

	Database Objects
	Viewing and Editing Objects
	The Object Windows
	Creating New Objects
	Editing Objects
	Deleting Objects

	Serial Ports
	The New Serial Port Dialog
	 Tag:
	 Name:
	 COM Port:
	 Settings:
	 Line term:
	 Port usage:
	 Delay between commands:
	 Receive message control:
	 Devices:
	 Polling sequence:
	 The “Test…” button:

	Devices
	The New Device Dialog
	 Tag:
	 Name:
	 First-time initialization / Reinitialization after timeout / Common initialization:
	 Commands to send:
	 Custom retries:
	 Don’t use the device driver’s init sequence:
	 Driver:
	Show as decimal / Show as hex:
	Show as text / Show as hex: (not shown)
	 Controls:
	Disable device:
	Enable device:

	The Device Initialization Sequences
	The New Initialization Command Dialog
	 Device:
	 Command:
	Show as decimal / Show as hex:
	Show as text / Show as hex: (not shown)
	 Keep with next:

	The Polling Sequence
	The New Poll Dialog
	 Device:
	 Command:
	Show as decimal / Show as hex:
	Show as text / Show as hex: (not shown)
	 Keep with next:

	Registers
	Common Characteristics
	 The ON/OFF state:
	Display:
	Logging:
	Automatic controls:
	Alarms:
	 Alarm level:
	No alarm level assigned:
	Status:
	Alarm:
	Latching alarm:
	 Error state:
	 Masked state:
	Manual masking:
	Auto masking:
	Internal masking:

	 Logging:
	 Automatic controls:
	 User definable registers:
	 Hiding registers:
	Displaying alternate forms of the same data:
	Displaying different sets of information in the same area of a screen:
	Providing for different station configurations:

	 Sources:

	The New Register Dialogs
	 Tag:
	 Name:
	 Alarm level:
	 Log in file only:
	 Enable auto mask:
	 Enable manual mask:
	 Don’t transmit over network:
	 Initially hidden:
	 Source type:
	 User definable:
	 Ask to mask unmask:
	 Configure log strings:
	 The “Log Strings…” button:
	 The “Controls…” button:

	Register Log Strings
	The Edit Register Log Strings Dialog
	 Specifying the log strings
	 Fault clear/off:
	 Fault/on:
	 Acknowledge:
	 Masking:
	 Unmasking:
	 Use old style default log strings:

	Automatic Controls
	The Edit Automatic Controls Dialog
	 Specifying the control programs and arguments
	 Fault clear/off:
	 Fault/on:
	 Acknowledge:
	 Masking:
	 Unmasking:

	Bistate Registers
	The New Bistate Register Dialog
	 Configure polarity:
	 Response time:
	 Allow user to change response time:

	Bistate Value Controls
	The Edit Automatic Controls Dialog for Bistate Registers
	 Value change:

	Digital Registers
	The New Digital Register Dialog
	 Alarm values:
	 The “Value Names…” button:

	Digital Value Log Strings
	The Edit Register Log Strings Dialog for Digital Registers
	 Log strings for specific values:
	 Other Values:
	Don’t log other values:
	Log all other values:
	Log only on state values:
	Log only off state values:
	Log the following values:
	Log all values except:
	 Prefix:
	 Suffix:
	 Base:
	 Minimum digits:
	 Use value names:
	 Sample:

	Digital Value Controls
	The Edit Automatic Controls Dialog for Digital Registers
	 Controls for specific values:
	 Other Values:

	Analog Registers
	The New Analog Register Dialog
	Size:
	Allow user to change limits:
	Allow user calibration:
	Configure units:
	Configure precision:
	Low limit, high limit:
	The “Calibration…” button:

	Analog Value Log Strings
	The Edit Register Log Strings Dialog for Analog Registers
	 Selecting which values to log:
	Don’t log any values:
	Log all values:
	Log only on state values:
	Log only off state values:
	Log values within or on the following limits:
	Log values outside or on the following limits:
	Log values strictly within the following limits:
	Log values strictly outside the following limits:
	 Don’t log changes smaller than:
	 Prefix:
	 Units spacer:
	 Suffix:
	 Number of decimals:
	 Show plus sign:
	 Use exponential notation:
	 Exponent marker:
	 Number of digits:
	 Show plus sign:
	 Factor:
	 Offset:
	 Sample:

	Analog Value Controls
	The Edit Automatic Controls Dialog for Analog Registers
	 Value change:
	 Don’t execute for changes smaller than:

	Analog Calibration Settings
	The Calibration Data Dialog
	 Calibration points:
	 Fit a polynomial to the calibration points:
	y = c + a1 x + a2 x2 + a3 x3 + …:
	log y = c + a1 x + a2 x2 + a3 x3 + …:
	 Degree of the polynomial:
	 Force c to be 0 (no constant offset):

	String Registers
	The New String Register Dialog
	 Alarm Triggers:

	String Value Log Strings
	The Edit Register Log Strings Dialog for String Registers
	 Don’t log any values:
	 Log all values:
	 Log only on state values:
	 Log only off state values:
	 Log only values that match the pattern:
	 Log only values that don’t match the pattern:
	 Pattern:
	 Prefix:
	 Suffix:
	 Sample:

	String Value Controls
	The Edit Automatic Controls Dialog for String Registers
	 Value change:

	Sources
	Serial Data Object Sources
	The Serial Data Object Source Dialog
	 Port:
	 Device:
	 Data object:
	Show as decimal / Show as hex:
	Show as text / Show as hex: (not shown)
	 Invert the value:
	 Factor:
	 Offset:
	 Slot:

	Summary Sources
	Bistate registers:
	Digital and analog registers:
	String registers:
	The Summary Source Dialog
	 Program:
	 Update only when an ON/OFF state changes:
	 Update only whenever a register value changes:
	 Registers:

	Remote Register Value Sources
	The Remote Register Value Source Dialog
	 IP addresses:
	 Remote register tag:

	Parameter Sources
	The Parameter Source Dialog
	 Default value:
	Show as text / Show as hex: (not shown)
	 Remember the value across launches of U.P.M.A.C.S.:

	Bit Mask Sources
	The Bit Mask Source Dialog
	 Port:
	 Device:
	 Data object:
	Show as decimal / Show as hex:
	Show as text / Show as hex: (not shown)
	 XOR mask:
	 AND mask:
	 Polarity:

	Timeout Sources
	The Timeout Source Dialog
	 Port:
	 Device:

	Ping Result Sources
	The Ping Result Source Dialog
	 IP address:
	 Treat network errors as alarms:
	 Interval:
	 Timeout:
	 Retries:

	Grand Summary Sources
	Remote Station Alarm Sources
	The Remote Station Alarm Source Dialog
	 Station name:
	 Register tag:

	Thresholds Sources
	The Thresholds Source Dialog
	 Port:
	 Device:
	 Data object:
	Show as decimal / Show as hex:
	Show as text / Show as hex: (not shown)
	 Value:
	Current:
	Highest:
	Lowest:

	 Bottom value:
	 Thresholds:

	Bit Collection Sources
	Examples
	 Using a number of adjacent bits from a single data object:
	 Using bits from different data objects, or using non-adjacent bits:
	The Bit Collection Source Dialog
	 Sections:
	 XOR mask:
	 The “Value Map” button:

	Bit Sections
	The New Bit Section Dialog
	 Port:
	 Device:
	 Data object:
	Show as decimal / Show as hex (not shown):
	Show as text / Show as hex (not shown):
	 Rotate bits:
	 XOR mask:
	 AND mask:

	Filter Sources
	The Filter Source Dialog
	 Port:
	 Device:
	 Data object:
	Show as decimal / Show as hex (not shown):
	Show as text / Show as hex (not shown):
	 Allowed strings:

	SCL Programs
	The New Program Dialog
	 Tag:
	 Name:
	 Allow execution without signing on:
	 Abort execution after … instructions:
	 Data decoders:
	 Data encoders:
	 Execute at startup:
	 Execute every … s:
	 Scheduled execution times:

	SCL Program Scheduling
	The Scheduled Execution Time Dialog
	 Execute the program … minutes:
	 After every hour:
	 After the following hours (0-23):
	 Regardless of the day of the month:
	 On the following days of the month:
	 Regardless of the day of the week:
	 On these days of the week:

	The SCL Program Editor
	Syntax Colouring
	Insert/Overwrite Mode
	The Selection Margin
	Drag-And-Drop Editing
	Paste Special
	 Paste Port Tag:
	 Paste Register Tag:
	 Paste Program Tag:
	 Paste Device Tag:
	 Paste Command Tag:
	 Paste Data Object Tag:
	 Paste Driver Program Tag:
	Undo/Redo
	Line Numbers
	Bookmarks

	SCL Syntax Colouring
	The SCL Syntax Colours Dialog
	 Item:
	 Select
	 To change
	 Foreground:
	 Background:
	 Text style:

	Specifying Arguments for SCL Programs
	The Edit Program Arguments Dialog
	 Arguments:
	 The “Edit…” button:
	 The “Delete” button:
	 The “New…” button:

	SCL Data Decoders and Encoders
	Numerical Decoders (Floating-Point Number)
	The New Numerical Decoder (Floating-Point Number) Dialog
	 Decoder number:
	 Encoding:
	Byte:
	Multibyte:
	BCD:
	Decimal, Hexadecimal, Binary, Octal:
	 Allow positive (+) sign:
	 Allow negative (-) sign:
	 Allow thousands separator:
	 Allow decimal marker:
	 Allow exponential notation:
	 Prefix for positive / negative exponent:
	Show as text / Show as hex:

	 Skip leading characters:
	Only spaces / All non-numerical / Only these:

	 Use fixed width:
	Allow trailing characters:

	 Implied decimals:

	Numerical Decoders (Unsigned Integer)
	The New Numerical Decoder (Unsigned Integer) Dialog
	 Decoder number:
	 Encoding:
	Byte:
	Multibyte:
	BCD:
	Decimal, Hexadecimal, Binary, Octal:
	 Skip leading characters:
	Only spaces / All non-numerical / Only these:

	 Use fixed width:
	Allow trailing characters:

	Numerical Decoders (Set Of Strings)
	The New Numerical Decoder (Set Of Strings) Dialog
	 Decoder number:
	 Patterns for values:

	String Decoders
	The New String Decoder Dialog
	 Decoder number:
	 Prefix:
	 Pattern:
	 Suffix:

	Boolean Decoders
	The New Boolean Decoder Dialog
	 Decoder number:
	 Pattern for true:
	 Pattern for false:

	Numerical Encoders (Floating-Point Number)
	The New Numerical Encoder (Floating-Point Number) Dialog
	 Encoder number:
	 Encoding:
	Byte:
	Multibyte:
	BCD:
	Decimal, Hexadecimal, Binary, Octal:
	 Show positive (+) sign:
	 Show negative (-) sign:
	 Use thousands separator:
	 Number of decimals:
	Show decimal marker:

	 Use fixed width:
	Pad with zeros / Pad with spaces / Custom padding character:
	Alignment:

	 Use capital letters A-F / small letters a-f as hex digits:
	 Use exponential notation:
	Number of non-decimal digits in the mantissa:
	Number of digits in the exponent:
	Prefix for positive / negative exponent:
	Show as text / Show as hex:

	Numerical Encoders (Unsigned Integer)
	The New Numerical Encoder (Unsigned Integer) Dialog
	 Encoder number:
	 Encoding:
	Byte:
	Multibyte:
	BCD:
	Decimal, Hexadecimal, Binary, Octal:
	 Use fixed width:
	Pad with zeros / Pad with spaces / Custom padding character:
	Align left / Align right:

	 Use capital letters A-F / small letters a-f as hex digits:

	Numerical Encoders (Set Of Strings)
	The New Numerical Encoder (Set Of Strings) Dialog
	 Encoder number:
	 Strings to use for values:
	 String for other values:
	 Show as text / Show as hex:

	String Encoders
	The New String Encoder Dialog
	 Encoder number:
	 Use fixed width:
	Pad with spaces / Custom padding character:
	Align left / Align right:
	 Replace non-printable chars:

	Boolean Encoders
	The New Boolean Encoder Dialog
	 Encoder number:
	 String for true:
	 String for false:
	 Show as text / Show as hex:

	Screens
	The New Screen Dialog
	 Tag:
	 Name:
	 Initial size:
	 Dialog:
	 Show screen initially:
	 Don’t transmit over network:
	 Custom background colour:
	 Acknowledge program:

	The Screen Editor
	Creating Graphic Objects
	Selecting, Moving, and Resizing Objects
	Locking the Graphics Tool
	The Graphics Grid
	Editing Object Properties
	Using Properties from Existing Objects to Create New Objects
	Modifying the Screen Area
	Controlling the Way Indicators Are Displayed
	 State shown by indicators:
	 Value shown by multistate indicators:
	 Value shown by digital, analog, and string indicators:
	 Value shown by dials, graphs, and X-Y position markers:

	Manipulating Graphic Objects
	Front-To-Back Ordering Of Objects
	 Raise:
	 Lower:
	 Bring To Front:
	 Send To Back:
	Grouping Objects
	Flipping/Rotating Objects
	Aligning Objects
	 Horizontal alignment:
	 Vertical alignment:

	Images
	Static Objects
	 Drawing static objects:
	The Object Properties Page
	 Required user level:
	 Page tabs:
	 Line width:
	 Line style:
	 Line colour:
	 Fill style/pattern:
	 Background fill colour:
	 Foreground fill colour:
	 Text font:
	 Bold style/italic style:
	 Text size:
	 Text colour:
	 Edit text button:
	 Alignment:
	 Image name:
	 Image preview:

	3D Objects
	 Drawing 3D objects:
	The 3D Object Properties Page
	 Required user level:
	 Page tabs:
	 Horizontal divider:
	 Vertical divider:
	 Group box:
	 Raised area:
	 Sunken area:
	 Recessed area:
	 Cutout area:
	 Window colour area:
	 Dialog colour area:

	Indicators
	The State of an Indicator
	 The different states:
	 How states are displayed:
	 Enabled and disabled states:
	 Viewing and modifying states:
	The Value of an Indicator
	Text Used in Indicators

	Bistate Indicators
	 Drawing bistate indicators:
	The Bistate Indicator Properties Page
	 Required user level:
	 Page tabs:
	 Register:
	 State pop-up menu:
	 State enable:
	 Line width:
	 Line style:
	 Line colour:
	 Fill style/pattern:
	 Background fill colour:
	 Foreground fill colour:
	 Text font:
	 Bold style/italic style:
	 Text size:
	 Text colour:
	 Edit text button:
	 Alignment:
	 Image name:
	 Image preview:

	Multistate Indicators
	 Drawing multistate indicators:
	The Multistate Indicator Properties Page
	 Required user level:
	 Page tabs:
	 Register:
	 State pop-up menu:
	 State enable:
	 Line width:
	 Line style:
	 Line colour:
	 Fill style/pattern:
	 Background fill colour:
	 Foreground fill colour:
	 Text font:
	 Bold style/italic style:
	 Text size:
	 Text colour:
	 Edit text button:
	 Alignment:
	 Image name:
	 Image preview:

	Digital Indicators
	 Drawing digital indicators:
	The Digital Indicator Properties Page
	 Required user level:
	 Page tabs:
	 Register:
	 Prefix:
	 Suffix:
	 Base:
	 Minimum digits:
	 State pop-up menu:
	 State enable:
	 Text font:
	 Bold style/italic style:
	 Text size:
	 Text colour:
	 Edit text button:
	 Alignment:

	Analog Indicators
	 Drawing analog indicators:
	The Analog Indicator Properties Page
	 Required user level:
	 Page tabs:
	 Register:
	 Prefix:
	 Suffix:
	 Value:
	Current:
	Highest:
	Lowest:

	 Decimals:
	 Show plus sign:
	 The “Exponent…” button:
	 The “Fact/off…” button:
	 State pop-up menu:
	 State enable:
	 Text font:
	 Bold style/italic style:
	 Text size:
	 Text colour:
	 Edit text button:
	 Alignment:

	Analog Indicator Exponential Notation
	The Edit Exponential Notation Dialog
	 Use exponential notation:
	 Exponent marker:
	 Number of digits:
	 Show plus sign:
	 Font:
	 Reduce by:
	 Raise by:

	String Indicators
	 Drawing string indicators:
	The String Indicator Properties Page
	 Required user level:
	 Page tabs:
	 Register:
	 Prefix:
	 Suffix:
	 State pop-up menu:
	 State enable:
	 Text font:
	 Bold style/italic style:
	 Text size:
	 Text colour:
	 Edit text button:
	 Alignment:

	Dials
	 Drawing dials:
	The Dial Properties Page
	 Required user level:
	 Page tabs:
	 Register:
	 Up and down / Left and right:
	 Value:
	Current:
	Highest:
	Lowest:

	 Top:
	 Bottom:
	 State pop-up menu:
	 State enable:
	 Line width:
	 Line style:
	 Line colour:
	 Fill style/pattern:
	 Background fill colour:
	 Foreground fill colour:
	 Use image:
	 Image name:
	 Image preview:

	Graphs
	 Drawing graphs:
	The Graph Properties Page
	 Required user level:
	 Page tabs:
	 Register:
	 Graph type:
	 Top:
	 Bottom:
	 Line width:
	 Line style:
	 Line colour:
	 Fill style/pattern:
	 Background fill colour:
	 Foreground fill colour:
	 Image name:
	 Image preview:

	X-Y Position Markers
	 Drawing X-Y position markers:
	The X-Y Position Marker Properties Page
	 Required user level:
	 Page tabs:
	 Register:
	 X coordinate register:
	 Value:
	Current:
	Highest:
	Lowest:

	 Left:
	 Right:
	 Y coordinate register:
	 Value:
	Current:
	Highest:
	Lowest:

	 Top:
	 Bottom:
	 State pop-up menu:
	 Image name:
	 Image preview:
	 The “Label and lines…” button:

	X-Y Position Marker Labels and Lines
	The Edit Label and Lines Dialog
	 State pop-up menu:
	 Label text:
	 Label font:
	 Label size:
	 Label colour:
	 Alignment:
	 X Leader:
	 Y Leader:
	 Trace:
	 Line enable:
	 Line width:
	 Line style:
	 Line colour:
	 The “Apply” button:

	Controls
	 SCL program controls:
	 Screen controls:
	 Network screen controls:
	 Drawing controls:
	The Control Properties Page
	 Required user level:
	 Page tabs:
	 Program:
	 Screen:
	 Network screen:
	Station name:
	Screen tag:
	 Caption:
	 Screen colour:

	Labels
	 Drawing labels:
	The Label Properties Page
	 Required user level:
	 Page tabs:
	 Register:
	 Text:
	 Text font:
	 Bold style/italic style:
	 Text size:
	 Text colour:
	 Text alignment:

	SABus Requests
	SABus Queries
	The New SABus Query Dialog
	 Tag:
	 Name:
	 Opcode:
	 Fixed parameters:
	 Response data:

	Response Data Objects
	Register State Response Data
	The New Register State Response Data Dialog
	 Register:
	 Off state:
	 On state:
	 Masked state:
	 Error state:

	Digital Register Value Response Data (Number)
	The New Digital Register Value Response Data Dialog
	 Register:
	 Binary/Octal/Decimal/Hexadecimal number:
	 Use fixed width:
	Width:
	 Masked state:
	 Error state:

	Digital Register Value Response Data (Strings)
	The New Digital Register Value Response Data Dialog
	 Register:
	 Values:
	 Other values:
	 Masked state:
	 Error state:

	Analog Register Value Response Data
	The New Analog Register Value Response Data Dialog
	 Register:
	 Value:
	Current:
	Highest:
	Lowest:
	All values:
	 Factor:
	 Offset:
	 Signed/Unsigned value:
	 Decimals:
	 Use fixed width:
	Width:
	Masked state:
	Error state:
	Separator between values:

	String Register Value Response Data
	The New String Register Value Response Data Dialog
	 Padding:
	 Use fixed width:
	Width:
	Left aligned:
	Right aligned:
	 Masked state:
	 Error state:

	Register Status Bits Response Data
	The New Register Status Bits Response Data Dialog
	 Bit 7/6:
	 Bit 5/4/3/2/1/0:
	Set bit on alarm/on:
	Set bit on alarm clear/off:
	Set bit on error state:
	Set bit if masked:

	Processor Response Data
	The New Processor Response Data Dialog
	 Program:
	 Arguments:

	Fixed Data String Response Data
	The New Fixed Data String Response Data Dialog
	 Data string:

	SABus Commands
	The New SABus Command Dialog
	 Tag:
	 Name:
	 Opcode:
	 Fixed parameters:
	 Program:
	 Parameters:

	Variable Command Parameters
	String Parameters
	The New String Parameter Dialog
	 Place data in a variable
	String variable name:
	 Data pattern:

	Number Parameters
	The New Number Parameter Dialog
	 Numerical variable name:
	 Binary/Octal/Decimal/Hexadecimal number:
	 Factor:
	 Offset:
	 Signed value:
	 Unsigned value:
	 Allow decimals
	 Use fixed width:
	Width:

	Boolean Parameters
	The New Boolean Parameter Dialog
	 Boolean variable name:
	 Set to true% if data is:
	 Set to false% if data is:

	Set of Strings Parameters
	The New Set Of Strings Parameter Dialog
	 Numerical variable name:
	 Values:

	Bits Parameters
	The New Bits Parameter Dialog
	 Place bit 5/4/3/2/1/0 in a variable:
	Boolean variable name:

	Tools
	Testing Serial Ports
	The Test Serial Port Dialog
	 Use specified port:
	 Use:
	 Device:
	 Command:
	Show as decimal / Show as hex (not shown):
	Show as text / Show as hex (not shown):
	 Command data:
	 Response data:
	 Response elements:
	 Show as text, Show as hex:
	 The message field:
	 The “Send” button:
	 The “Init Device” button:
	 The “Reinit Device” button:
	 The “Init Port” button:
	 The “Poll Port” button:
	 The “Close” button:

	Device Driver Libraries
	Creating and Editing Device Driver Libraries
	Exporting Device Drivers
	Importing Device Drivers

	Testing a Station File
	Batch Processing of Registers
	 Finding tags:
	 Modifying registers:
	 Duplicating registers:
	 Deleting registers:
	The Modify/Duplicate Registers Dialog
	 Registers:
	 Find:
	 Replace with:
	 Match case:
	 Whole word:
	 The “Apply changes to” rectangle:
	Names:
	Log strings:
	Automatic controls:
	Arguments of automatic controls:
	Parameters of serial objects in sources:
	Registers in sources:
	Programs in sources:
	Arguments of programs in sources:
	Parameters in Parameter Sources:
	The “Set All” button:
	The “Clear All” button:
	 Change serial ports in sources:
	From:
	To:

	 Change devices in sources:
	Find:
	Replace with:
	Match case:
	Whole word:

	 Change serial objects and device data buffers in sources:
	Find:
	Replace with:
	Match case:
	Whole word:

	 Change device data buffer offsets in sources:
	 The “Find All Tags” button:
	 The “Replace All” button:
	 The “Duplicate” button:
	 The “Delete All” button:
	 The “Close” button:

	Batch Processing of SCL Programs
	 Finding tags:
	 Modifying SCL programs:
	 Duplicating SCL programs:
	 Deleting SCL programs:
	The Modify/Duplicate Programs Dialog
	 Programs:
	 Find:
	 Replace with:
	 Match case:
	 Whole word:
	 The “Apply changes to” rectangle:
	Names:
	String literals:
	Remarks:
	All code:
	 The “Find All Tags” button:
	 The “Replace All” button:
	 The “Duplicate” button:
	 The “Delete All” button:
	 The “Close” button:

	Batch Processing of SABus Requests
	 Finding tags:
	 Modifying requests:
	 Duplicating requests:
	 Deleting requests:
	The Modify/Duplicate SABus Requests Dialog
	 SABus requests:
	 Find:
	 Replace with:
	 Match case:
	 Whole word:
	 The “Apply changes to” rectangle:
	Names:
	Fixed parameters:
	Registers in queries:
	Programs in queries:
	Arguments of programs in queries:
	Command programs:
	Arguments of command programs:
	The “Set All” button:
	The “Clear All” button:
	 The “Find All Tags” button:
	 The “Replace All” button:
	 The “Duplicate” button:
	 The “Delete All” button:
	 The “Close” button:

	Transferring Register Sources Between Registers
	The Copy Register Sources Dialog
	 From:
	 To:
	 The “Copy” button:
	 The “Close” button:

	Transferring Code Between Programs
	The Copy Program Code Dialog
	 From:
	 To:
	 The “Copy” button:
	 The “Append…” button:
	 The “Prepend…” button:
	 The “Close” button:

	Batch Processing of Graphic Objects
	The Change Screen Objects Dialog
	 Find:
	 Replace with:
	 Match case:
	 Whole word:
	 The “Apply changes to” rectangle:
	Text:
	Registers used by indicators and labels:
	Programs used by controls:
	Arguments for programs used by controls:
	Screens used by controls:
	 The “Replace All” button:
	 The “Close” button:

	Deleting Off-Screen Objects

	Menus
	The File Menu
	 Close Window:
	 New:
	 Open:
	 Load Images:
	 Reload Images:
	 Save:
	 Save As:
	 Print:
	 Print Preview:
	 Print Setup:
	 List of recently opened files:
	 Exit:

	The Edit Menu
	 Undo:
	 Redo:
	 Cut:
	 Copy:
	 Paste:
	 Paste Special:
	 Delete:
	 Duplicate:
	 Select All:
	 Go To Line:
	 Find:
	 Find Again:
	 Replace:
	 Toggle Bookmark:
	 Previous Bookmark:
	 Next Bookmark:
	 Clear All Bookmarks:
	 Properties:
	 SCL Syntax Colours:

	The View Menu
	 Device Drivers:
	 Ports:
	 Registers:
	 Screens:
	 Programs:
	 SABus Request:
	 Indicator Values:
	 Tool Bars:
	 Drawing Properties:
	 Status Bar:
	 Grid:
	 Grid Size:
	 Align Grid With Screen:
	 Align Grid With Selection:

	The New Menu
	 Device Driver:
	 Port:
	 Register:
	 Screen:
	 Program:
	 SABus Request:

	The Draw Menu
	 Lines:
	 Splines:
	 Rectangles:
	 Ellipses:
	 Text:
	 Images:
	 Select:
	 Reshape:
	 Objects:
	 3D Objects:
	 Bistate Indicators:
	 Multistate Indicators:
	 Digital Indicators:
	 Analog Indicators:
	 String Indicators:
	 Dials:
	 Graphs:
	 X-Y Position Markers:
	 Controls:
	 Labels:
	 Lock Tool:
	 Snap To Grid:
	 Get Properties From Selection:

	The Arrange Menu
	 Raise:
	 Lower:
	 Bring To Front:
	 Send To Back:
	 Flip Horizontally:
	 Flip Vertically:
	 Rotate 90° Left:
	 Rotate 90° Right:
	 Rotate 180°:
	 Align With Grid:
	 Align Objects:
	 Group:
	 Ungroup:

	The Special Menu
	 Save Device Drivers:
	 Import Device Drivers:
	 Save And Test Station:
	 Modify/Duplicate Registers:
	 Modify/Duplicate Programs:
	 Modify/Duplicate SABus Requests:
	 Copy Register Sources:
	 Copy Program Code:
	 Modify Screen Objects:
	 Delete Off-Screen Objects:

	The Window Menu
	 Auto Size:
	 Cascade:
	 Tile Horizontally:
	 Tile Vertically:
	 Arrange Icons:
	 Close All:
	 List of open windows:

	The Help Menu
	 Development System:
	 Device Drivers:
	 SCL Language:
	 Find Keyword:
	 About U.P.M.A.C.S.:

	Tools Bars
	The Main Tool Bar
	 New file:
	 Open file:
	 Save:
	 Save and test:
	 Help topics:
	 SCL keyword help:
	 Auto size:

	The Edit Tools
	 Cut:
	 Copy:
	 Paste:
	 Print:
	 Undo:
	 Redo:
	 Toggle bookmark:
	 Previous bookmark:
	 Next bookmark:
	 Clear all bookmarks:
	 Get properties:

	The New Object Tools
	 New device driver:
	 New serial port:
	 New register:
	 New screen:
	 New SCL program:
	 New SABus request:

	The Object Lists Tool Bar
	 Toggle device drivers:
	 Toggle serial ports:
	 Toggle registers:
	 Toggle screens:
	 Toggle SCL programs:
	 Toggle SABus requests:

	The Drawing Tools
	 Select:
	 Reshape:
	 Static objects:
	 3D objects:
	 Bistate:
	 Multistate:
	 Digital:
	 Analog:
	 String:
	 Dials:
	 Graphs:
	 X-Y pos. markers:
	 Controls:
	 Labels:
	 Lines:
	 Splines:
	 Rectangles:
	 Ellipses:
	 Text:
	 Images:

	The Arranging Tools
	 Lower:
	 Raise:
	 Send to back:
	 Bring to front:
	 Group:
	 Ungroup:

	The Grid Tools
	 Toggle grid:
	 Snap to grid:
	 Grid size:
	 Align with grid:
	 Align grid with selection:
	 Align grid with screen:

	The Alignment Tools
	 Align left edges:
	 Align horizontal centers:
	 Align right edges:
	 Distribute horizontally:
	 Align top edges:
	 Align vertical centers:
	 Align bottom edges:
	 Distribute vertically:

	The Transformation Tools
	 Mirror vertically:
	 Mirror horizontally:
	 Rotate 90° left:
	 Rotate 90° right:
	 Rotate 180°:

	Appendices
	Appendix A: Regular Expressions

	Parts
	Character Parts
	 Sequence
	 Character matched
	 Sequence
	 Character matched
	 Code (hexadecimal)
	 Sequence
	 Character matched
	 Code (hexadecimal)
	 Sequence
	 Character matched
	 Code (hexadecimal)
	Character Set Parts
	Special Character Parts
	 Character
	 Description
	 Characters matched
	Modifiers
	The Question Mark Modifier
	The Asterisk Modifier
	The Plus Sign Modifier
	Range Modifiers

	Sections
	Examples of regular expressions

	Appendix B: Entering Binary Data
	Entering Data in Text Format
	Sequence
	Character
	Code (hexadecimal)
	Sequence
	Character
	Code (hexadecimal)
	Sequence
	Character
	Code (hexadecimal)
	Sequence
	Character matched
	Code (hexadecimal)
	Entering Data in Hexadecimal Format

	Appendix C: Entering Special Characters
	Symbol:
	Key combination:

	Appendix D: Uplink Port Protocol
	Packet Format
	Byte Number:
	Value:
	Byte Number:
	Value:
	Byte Number:
	Value:
	Error Messages
	Error Message:
	Meaning:

	Built-In Requests
	 User Request
	Query user:
	▫ Request:
	▫ Response:
	Sign on
	▫ Request:
	▫ Response:

	Sign off
	▫ Request:
	▫ Response:

	 Acknowledge Alarms Request
	▫ Request:
	▫ Response:

	Appendix E: Legacy Objects
	Serial Communications:
	Data Storage:
	Legacy Device Serial Communication
	Serial Communication Objects
	 Legacy devices
	 Legacy device drivers
	 Legacy commands
	 Legacy responses
	 Legacy messages
	 Legacy replies
	 Legacy data masks
	The Polling Process
	Receiving Unsolicited Data
	Device Initialization
	Port Access Synchronization

	Designing Legacy Device Drivers
	Step 1: Data Masks
	Step 2: Device Drivers
	 Responses
	 Commands
	 Replies
	 Messages

	Step 3: Serial Ports

	Legacy Data Masks
	The New Data Mask Dialog
	 Tag:
	 Name:
	 Prefix:
	 Suffix:
	 Pattern:
	 Buffer size:
	 Timeout:
	 Error pattern:

	Legacy Device Drivers
	The New Device Driver Dialog
	 Tag:
	 Name:
	 Prefix:
	 Suffix:
	 Delay after commands with no response:
	 Error pattern:
	 Objects for polling/Objects for unsolicited data:
	 Responses:
	 Commands:
	 Messages (not shown):
	 Replies (not shown):
	 The “Replace…” button:
	 The “Checksum…” button:

	Legacy Responses
	The New Response Dialog
	 Tag:
	 Mask:

	Legacy Commands
	The New Command Dialog
	 Tag:
	 String:
	 Show as text, Show as hex:
	 Response:
	 The “LRC” button:
	 The “Modulo 256” button:
	 The “Printable Chksm.” button:

	Legacy Messages
	The New Message Dialog
	 Tag:
	 Mask:
	 Reply:

	Legacy Replies
	The New Reply Dialog
	 Tag:
	 String:
	 Show as text, Show as hex:
	 The “LRC” button:
	 The “Modulo 256” button:
	 The “Printable Chksm.” button:

	Serial Ports
	The New Serial Port Dialog
	 Receive message control:

	Legacy Devices
	The New Device Dialog
	 Driver:
	 Description:
	 Reinitialize after timeout:
	 Timeout tolerance:
	 Initialization sequence:
	 Controls:
	Disable device:
	Enable device:
	Receive message:

	Legacy Sources
	Types of Legacy Sources
	Specifying the Relevant Part of the Serial Data
	 Using an offset from the beginning of the data:
	 Using a search key:

	Numerical Data Types
	Byte (unsigned):
	Byte (signed):
	Multibyte (lo-hi, unsigned):
	Multibyte (lo-hi, signed):
	Multibyte (hi-lo, unsigned):
	Multibyte (hi-lo, signed):
	BCD:
	Decimal:
	Hexadecimal:
	Binary:
	Octal:

	The Legacy Device Serial Data Source Dialogs
	 Port:
	 Device:
	 Data buffer:
	 Use search key:
	 Offset:
	 Fixed length:
	 Data type:

	Legacy Device Processor Sources
	The Processor Source Dialog
	 Program:

	Legacy Parameter Sources
	 Bistate registers:
	 Digital registers:
	 Analog registers:
	 String registers:
	The Parameter Source Dialog
	 Parameter:

	Legacy Device Bit Mask Sources
	The Bit Mask Source Dialog
	 XOR mask:
	 AND mask:
	 Polarity:

	Legacy Device Search String Sources
	The Search String Source Dialog
	 Search for:
	 Polarity:

	Legacy Device Direct Sources
	The Direct Source Dialog
	 The “Value Map” button:

	Legacy Device Thresholds Sources
	The Thresholds Source Dialog
	 Bottom value:
	 Thresholds:

	Legacy Device Strings Sources
	The Strings Source Dialog
	 Triggers:

	Legacy Device Bit Collection Sources
	The Bit Collection Source Dialog
	 Sections:
	 XOR mask:
	 The “Value Map” button:

	Legacy Device Bit Sections
	The Bit Section Dialog
	 Rotate bits:
	 XOR mask:
	 AND mask:

	Legacy Device Level Sources
	The Level Source Dialog
	 Value factor:
	 Value offset:

	Legacy Device Literal Sources
	The Literal Source Dialog

	Legacy Device Filter Sources
	The Filter Source Dialog
	 Allowed strings:

	Legacy Parameters
	The New Parameter Dialog
	 Tag:
	 Name:
	 Default value:
	 Show as text, Show as hex:

	Search and Replace in Legacy Device Drivers
	The Search And Replace Dialog
	 The “Replace All” button:
	 The “Close” button:

	The Device Address Page
	 New address:
	 Show as text, Show as hex:
	 Place Address … bytes from the beginning:

	The String Page
	 Search for:
	 Replace with:
	 Show as text, Show as hex:
	 Replace only the first occurrence:

	The Response Page
	 Search for:
	 Replace with:

	The Mask Page
	 Search for:
	 Replace with:

	The Reply Page
	 Search for:
	 Replace with:

	Calculating Checksums
	The Add/Change Checksum Dialog
	 Type of Checksum:
	 Replace checksum … bytes from the end:
	 Exclude the first … bytes:
	 The “Add/Change” button:
	 The “Close” button:

	Batch Processing of Registers
	The Modify/Duplicate Registers Dialog
	 The "Apply changes to" rectangle (not shown):
	Parameters in parameter sources (not shown):

	 Change serial objects and device data buffers in sources:
	Find:
	Replace with:
	Match case:
	Whole word:

	 Change device data buffer offsets in sources:
	Data buffer:
	Add … to offsets greater than or equal to:

	Batch Processing of Parameters
	 Finding tags:
	 Modifying parameters:
	 Duplicating parameters:
	 Deleting parameters:
	The Modify/Duplicate Parameters Dialog
	 Parameters:
	 Find:
	 Replace:
	 Match case:
	 Whole word:
	 The “Apply changes to” rectangle:
	Names:
	Default values:

	 The “Find All Tags” button:
	 The “Replace All” button:
	 The “Duplicate” button:
	 The “Delete All” button:
	 The “Close” button:

	Contact Information
	U.P.M.A.C.S. Communications Inc.

