

version 6.2
Development System

DEVELOPING DEVICE DRIVERS
UPMACS Communications Inc.

Current for Development System v6.2.0

U.P.M.A.C.S. Developer’s Manual Table of Contents

Table of Contents

INTRODUCTION .. 3

HOW DEVICE DRIVERS WORK 4

STRUCTURE OF AN U.P.M.A.C.S. DEVICE DRIVER .. 4
OVERVIEW OF COMMAND TEMPLATES .. 5
OVERVIEW OF COMMANDS... 8
OVERVIEW OF DATA OBJECTS.. 9
OVERVIEW OF SCL PROGRAMS ... 11

DEVICE DRIVER OBJECTS 12

DEVICE DRIVERS ... 12
PARAMETERS .. 14
COMMAND TEMPLATES... 15
COMMANDS ... 17
DATA OBJECTS.. 18
SCL PROGRAMS.. 19
ERROR HANDLING.. 20
INITIALIZATION SEQUENCE.. 22

COMMANDS ELEMENTS 25

OVERVIEW... 25
FIXED STRING COMMANDS ELEMENTS .. 25
DELAY COMMANDS ELEMENTS ... 26
BISTATE PARAMETER COMMANDS ELEMENTS.. 26
DIGITAL PARAMETER (NUMBER) COMMAND ELEMENTS .. 27
DIGITAL PARAMETER (STRINGS) COMMAND ELEMENTS.. 28
ANALOG PARAMETER COMMANDS ELEMENTS.. 29
STRING PARAMETER COMMANDS ELEMENTS... 32
BISTATE PARAMETER BITS COMMANDS ELEMENTS.. 33
DATA LENGTH COMMANDS ELEMENTS .. 34
CHECKSUM COMMAND ELEMENTS .. 36
COMMAND DATA COMMAND ELEMENTS .. 40

RESPONSES ELEMENTS 41

OVERVIEW... 41
RESPONSE ELEMENT CONDITIONS.. 42
REGULAR EXPRESSION RESPONSES ELEMENTS .. 43
COMMAND ELEMENT RESPONSES ELEMENTS.. 43
BISTATE PARAMETER RESPONSES ELEMENTS... 44
DIGITAL PARAMETER (NUMBER) RESPONSES ELEMENTS ... 44
DIGITAL PARAMETER (STRINGS) RESPONSES ELEMENTS ... 46
ANALOG PARAMETER RESPONSES ELEMENTS... 47
STRING PARAMETER RESPONSES ELEMENTS.. 49
NUMERICAL VALUE RESPONSES ELEMENTS .. 50
STRING VALUE RESPONSES ELEMENTS .. 52

 Page i

U.P.M.A.C.S. Developer’s Manual Table of Contents

 Page ii

CHECKSUM RESPONSES ELEMENTS.. 52
RESPONSE DATA RESPONSES ELEMENTS ... 56
NUMERICAL ERROR CODE RESPONSES ELEMENTS.. 57
STRING ERROR CODE RESPONSES ELEMENTS.. 59

DATA OBJECT SOURCES 60

OVERVIEW... 60
SERIAL DATA SOURCES ... 61
PROCESSOR SOURCES .. 63
SUMMARY SOURCES .. 64
PARAMETER SOURCES... 65
ON/OFF STRING SOURCES... 66
BIT MASK SOURCES... 66
SEARCH STRING SOURCES .. 70
DIGITAL VALUE LIST SOURCES ... 71
VALUE LIMITS SOURCES... 72
PATTERN MATCH SOURCES.. 74
DIGITAL NUMBER SOURCES.. 74
SET OF STRINGS SOURCES .. 76
THRESHOLDS SOURCES ... 77
BIT COLLECTION SOURCES .. 79
BIT SECTIONS.. 82
ANALOG NUMBER SOURCES... 86
STRING SOURCES.. 89
FILTER SOURCES... 89
MULTIPLE SOURCES .. 91

Developing U.P.M.A.C.S. Device Drivers Introduction

DEVELOPING U.P.M.A.C.S. DEVICE DRIVERS

Introduction

The U.P.M.A.C.S. Development System allows you to develop powerful and flexible device driver
for use in station files. You can develop device drivers right in your station file, or you can import
them from device driver libraries. The development system also allows you to make your own
device driver libraries.

A device driver library is essentially a station file that contains no objects other than device driv-
ers. If you have created only device drivers, you can save your station file as a device driver li-
brary with the extension *.upmacs-drivers by selecting “Save as type: Device Driver Library” at
the bottom of the Save As dialog.

The formats for station files and device driver libraries are compatible. You can save any device
driver library as a station file, and you can save any station file as a device driver library, as long
as it contains only device drivers. This means that there is no need for separate “New Station
File” and “New Device Driver Library” menu items. The type of a new file is first determined when
you save it.

 Page 3

Developing U.P.M.A.C.S. Device Drivers How Device Drivers Work

HOW DEVICE DRIVERS WORK

Structure of an U.P.M.A.C.S. Device Driver

Each device in a serial port uses a device driver to specify the behaviour of the equipment. There
is one device driver for each type of equipment, but devices with the same serial protocol share a
device driver. Device drivers are not tied to individual serial ports; devices on different ports can
share the same device driver.

Device Driver Parameters

Each device driver can have one or more parameters whose values are specified by the devices
that use the driver. Most device drivers, for example, will ask the device to specify an address. A
device driver for a klystron HPA might also ask the device to specify whether the equipment is
equipped with a channel changer.

There are four types of parameters a device driver can have:

Bistate Parameters
Bistate parameters can have a value of ON or OFF. You can use bistate parameters to switch
device driver features on or off.

Digital Parameters
Digital parameters have an integer number between 0 and 4,294,967,295 as their value. You can
use digital parameters to specify a device address, or other numerical data. You could, for exam-
ple, use digital parameters to specify the number of primaries and backups a smart switch can
have.

Analog Parameters
Analog parameters can have almost any numerical value, including negative values and fractions.
Analog parameters are rarely used in device drivers.

String Parameters
String parameters can have any arbitrary data as a value. You can use string parameters to spec-
ify the device address, if the address is a string (“A”, “B”, etc.) rather than a number.

Device Driver Objects

An U.P.M.A.C.S. device driver contains four types of objects.

Command Templates
Command templates are used to specify the command data and response, if any, for a group of
commands that all have the same basic format. Command templates can have parameters just
like device drivers, most typically the command opcode. The parameter values are specified by
the commands that are based on the template. A command template can also ask the command
to specify additional data to be included in the final string that is sent to the equipment.

Commands
Commands are based on command templates. Commands can also have parameters, whose
values are specified in the polling sequence, or by an SCL program that sends the command. A
set frequency command, for example, will ask you to specify the frequency to be set when the
command is sent.

Data Objects
Data objects contain the information that is decoded from the equipment’s responses. Each piece
of information you want to access or display must be stored in a data object. Each data object
has a source that specifies what response the value is to be taken from, and how. Data objects

 Page 4

Developing U.P.M.A.C.S. Device Drivers How Device Drivers Work

are similar to the global registers, in fact, registers usually take their values from serial data ob-
jects.

SCL Programs
Device drivers can contain SCL programs. These programs can be used to decode data from a
response, to calculate custom checksum values. Device driver programs can also be called by
regular SCL programs. This allows you to provide pre-made code for complicated control func-
tions, which can then be used by the actual control programs.

Error Handling

You can specify one or more types of error code that the device might return. You can also spec-
ify whether to resend the command, reinitialize the device, or do nothing when a specific error
code is returned.

Initialization Sequence

You can specify an initialization sequence for the device. The initialization sequence of each de-
vice in a port is sent when the port is opened, and when the device times out. You can specify a
sequence of commands to send when the port is opened, when the device times out, and com-
mands that are sent in both cases.

You should only include those commands in the driver’s initialization sequence that have to be
sent for all devices that use the driver. Any additional initialization commands that depend on the
individual device should be specified in the New Device dialog when the device is added to the
serial port.

Overview Of Command Templates

A command template specifies the command data and response, if any, for a group of commands
that have similar formats.

Many device drivers contain only a single command template that specifies the basic structure of
all the commands. How many command templates you will need will depend on the serial proto-
col of the device. The more closely the commands for a device follow an established pattern, the
fewer templates you will need.

The command template specifies the buffer size and timeout for commands that expect a re-
sponse, or the delay before the next command for commands that don’t. Not all the commands
based on the template need to use the timeout and buffer size specified by the template, these
settings can be overridden by the individual commands. There is no need to make a separate
command template for a command merely because it needs a larger data buffer to hold the re-
sponse data.

Command Template Parameters

Each command template can have one or more parameters whose values are specified by the
commands that are based on it. Most command templates, for example, will ask the command to
specify the command opcode.

There are four types of parameters a command template can have:

Bistate Parameters
Bistate parameters can have a value of ON or OFF.

Digital Parameters
Digital parameters have an integer number between 0 and 4,294,967,295 as their value.

Analog Parameters
Analog parameters can have almost any numerical value, including negative values and fractions.

 Page 5

Developing U.P.M.A.C.S. Device Drivers How Device Drivers Work

String Parameters
String parameters can have any arbitrary data as a value. Most often, you would use a string pa-
rameter for the command opcode.

Command Elements

The command template specifies the command data to be sent. This is done by constructing a
command string from a number of command elements. Each command element describes the
format of a distinct section of the final command string. The command header, the device ad-
dress, any data length bytes, the command opcode, the checksum, the terminating character:
each of these will have its own command element. You can freely choose how many command
elements you need, how they are encoded, and in which order they are to be sent.

There is a special type of command element called “command data.” The exact content of a com-
mand data command element is specified not by the template, but the command itself. You must
use a command element to allow the command to encode any of its parameters, since the com-
mand’s parameters are not accessible to the command template. Other uses for command data
command elements are, of course, thinkable. You can use a command data command element
whenever you do not want to specify the exact format of a section of the command string in the
template.

Each device in a serial port uses a device driver to specify the behaviour of the equipment. There
is one device driver for each type of equipment, but devices with the same serial protocol share a
device driver. Device drivers are not tied to individual serial ports; devices on different ports can
share the same device driver.

Example:

A command template for the Scientific Atlanta’s popular SABus protocol, for example, would contain the
following six command elements:

1. The start character (STX, ASCII 02h)

2. Device address (Taken from a device driver parameter)

3. The command opcode (Taken from a template parameter)

4. The command data

5. The terminating character (ETX, ASCII 03h)

6. The checksum byte

Response Elements

The command template specifies the format of the response, if any. It can also specify the format
of any error response the equipment might send. Just as the command data is specified using
command elements, the response data is specified using response elements. Again, each distinct
part of the response will be represented by a response element. The response header, the device
address, any data length bytes, the command opcode, the checksum, the terminating character:
each of these will have its own response element. You can freely choose how many response
elements you need, how the data is decoded, and in which order they should appear in the re-
sponse.

Most response elements are only used to make sure that the response is valid, and the decoded
data is then discarded. A checksum response element, for example, will decode the checksum
from the response and verify that it is correct. If the checksum is incorrect, the response is simply
rejected. If the checksum (together all other response elements) is correct, the response is con-
sidered valid and accepted. The same goes for the device address and command opcode, if you
specified them. The device address is decoded from the response packet, and then compared to
the device address of the driver. If they are the same, the command is accepted, if they are not
the same, it is rejected. You could just as well design a response template that accepts any de-

 Page 6

Developing U.P.M.A.C.S. Device Drivers How Device Drivers Work

vice address; it would not affect the serial communications adversely. It would merely mean that,
if a response has the wrong device address, it would be accepted anyway. In the same spirit, the
command template could simply ignore the checksum rather than verify it. This would simply
mean that responses with an incorrect checksum would be accepted as valid.

There are, however, three special kinds of response elements. A valid response may have one or
more response data response elements. The data contained in a response data response ele-
ment is not simply verified and then discarded, bit it is stored and can then be decoded by the
device driver’s data objects. A simple acknowledge response, whose only purpose is to inform
the sender that a command has been executed correctly, would hence have no response data
response elements. The response to a query for equipment parameters, however, contains actual
valuable information, and must hence have at least one response data element. If you fail to in-
clude a response data response element in the template for a query, the response will only be
checked for validity, and then simply discarded. There will be no way for you to decode and use
the data returned with it. Any information that you intend to use in one of the device driver’s data
objects must be part of a response data element.

Error responses cannot contain response data response elements. Instead, they have error code
response elements. The error code or codes you have specified in the device driver are decoded
from the error code response elements, and appropriate action is taken. You don’t have to de-
code the error codes if you don’t want to: If your device driver has no error codes, all error mes-
sages are simply ignored.

Both valid and error responses can also contain value response elements. Value response ele-
ments are used to extract either numerical values (integers between 0 and 4,294,967,295) or
strings from the response, to be used in one of three ways:

 as a data length value for a section of the response

 as a repeat count for another response element

 to evaluate response element conditions (see below)

Example:

The valid response for equipment that uses the SABus protocol, for example, would have the following six
response elements:

1. The start character (ACK, ASCII 06h)

2. Device address (Checked against the corresponding device driver parameter)

3. The command opcode (Checked against the corresponding template parameter)

4. The response data

5. The terminating character (ETX, ASCII 03h)

6. The checksum byte

The error response would be the same, except that the start character is a NAK (ASCII 15h), and there would
be one or more error code response elements instead of the response data.

Response Element Conditions

Each response element can have a response element condition attached to it. This simply means
that U.P.M.A.C.S. will only look for a response element that has a condition, if the condition is
true. The condition is always based on a value extracted by a value response element. You can
check if numerical values are less than, greater than, or equal to a certain value, or you can
check if a string value is equal to, or contains a certain string.

 Page 7

Developing U.P.M.A.C.S. Device Drivers How Device Drivers Work

Response element conditions are an advanced feature, and are rarely used. Use response ele-
ment conditions if the response may or may not contain a certain block of data, depending on
some flag or value in the response.

Default Error Codes

If you specified error codes for the device driver, but the error response to commands based on
this template does not contain all of the error codes explicitly, you can specify default values for
those error codes. The error code will simply be assumed to be the default value if an error re-
sponse is received, no matter what that response contains.

Overview Of Commands

Commands are based on command templates. Each command specifies the values of the tem-
plate parameters, as well as the data contained in any command data command elements the
template may have.

The command may also override the buffer size and timeout values for commands that expect a
response.

Command Parameters

Each command can have one or more parameters whose values are specified in the polling se-
quence, or by an SCL program that sends the command. Command parameters are used in two
ways:

Some parameters are used to specify different values for a command. A Set frequency com-
mand, for example, will have a parameter called “Frequency,” whose value specifies the fre-
quency that will be set. The command is treated as the same command no matter which fre-
quency is specified: Any data objects that depend on the command will be updated regardless of
the frequency, and if you disable the command, it will be disabled for all frequencies.

Some parameters, however, are used to create different commands with the same functionality. A
Query switch position command for a unit that controls eight waveguide switches, for example,
might have a parameter that specifies which switch to query. In this case, the eight different varia-
tions of the command should be treated as if they were eight separate commands: If I disable
switch number 1, I should still be able to query switch 2, and the position of switch 2 must only be
updated if I actually query switch 2, not if I query switch 3 or 4.

The sources of data object, and the ENABLECMD and DISABLECMD SCL commands, therefore
expect you to specify a switch number for the Query switch position command, but not a fre-
quency for a Set frequency command. The set frequency command is one single command re-
gardless of the frequency, the Query switch position command, however, is eight different com-
mands in one, distinguished by the switch number.

When you add a parameter to a command, you have to specify whether it is used to distinguish
between different commands or not.

There are four types of parameters a command can have:

Bistate Parameters
Bistate parameters can have a value of ON or OFF. You can use a bistate parameter to create a
command to switch the equipment between two different states, e.g. local and remote.

Digital Parameters
Digital parameters have an integer number between 0 and 4,294,967,295 as their value. You can
use a digital parameter to create a command to set a channel, to switch a backup to a particular
primary, or to switch between more than two states (e.g. local / remote / remote front panel
mode). You can also use digital parameters to create commands to query the status and settings
for a particular primary or backup channel of a smart switch.

 Page 8

Developing U.P.M.A.C.S. Device Drivers How Device Drivers Work

Analog Parameters
Analog parameters can have almost any numerical value, including negative values and fractions.
Use analog parameters to set frequencies, attenuations, etc.

String Parameters
String parameters can have any arbitrary data as a value. Use string parameters to set satellite or
channel names, to upload binary data of any sort to the equipment, or to channel arbitrary data
through a routing device.

Command Data

The command specifies the content of each of the template’s command data command elements.
The data string for the command data command elements is itself made up of the same kinds of
command elements as the template uses. Only command data command elements are not used
by commands.

Overview Of Data Objects

Data objects contain the information extracted from serial responses, as well as any other set-
tings and parameters of the device. A data object may have one of four types:

 Bistate Objects
Bistate objects can have a value of ON or OFF. Use bistate objects to store alarm information,
and to store settings that have two possible states (e.g. local / remote).

 Digital Objects
Digital objects have an integer number between 0 and 4,294,967,295 as their value. Use digital
objects to hold settings that are integer numbers, like channel selections, or settings that have
more than two possible states (e.g. local / remote / remote front panel mode). If you use a digital
object for settings with more than two states, each possible state will be represented as a num-
ber.

 Analog Objects
Analog objects can have almost any numerical value, including negative values and fractions.
Use analog objects to hold frequencies, attenuations, meter readings, antenna positions, and
similar data. Analog objects can also have values that include greater than / less than informa-
tion. Some equipment does not return values outside of certain limits; a modem, for example,
might return a value of “<1.0E-20” for an Eb/N0 value. Analog objects can store this type of
value.

Analog objects can also contain more than one value. The number of values an analog object has
is termed its size. You can use an analog object with a size of more than one value to store such
data as the trace of a spectrum analyzer. The values of an analog object with more than one
value can be displayed as a bar or line graph by creating an analog register based on the object.

 String Objects
String objects can have any arbitrary data as a value. You can use a string object to hold satellite
names, channel designations, or any other data that you cannot conveniently store in any of the
other types of objects.

A data object does not necessarily contain a value. If the value of a data object hasn’t been up-
dated yet (e.g. because the command it gets its data from hasn’t been sent yet), or if an error oc-
curred trying to update a value (e.g. because its command timed out), the data object does not
have a value, and is said to be in the error state.

A data object can also be masked. A data object will be automatically masked if the command or
object(s) it depends on are disabled or masked. You can also mask a data object from within an
SCL program using the MASKDRVOBJ command. The value of a masked object is not accessi-
ble, and any registers that depend on it will be auto masked.

 Page 9

Developing U.P.M.A.C.S. Device Drivers How Device Drivers Work

Sources

Each data object has a source that determines where it gets its value from. There are many dif-
ferent types of sources for each type of data object.

Most objects get their value from a response to a query command, but some objects might get
their value from one or more other data objects. A bistate object, for example, can bet set to its
ON value if the value of a specific analog object goes beyond certain limits. Other data objects
don’t get their values from anywhere at all, they have to be set using SCL programs.

Object Parameters

A data object can have one or more parameters whose values are specified by the objects and
registers that depend on them.

Data object parameters are used to create groups of objects with related values. An object that
has parameters is not, in fact, a single data object with a single value, but a whole set of different
objects, each with its own value.

If you were writing a device driver for a unit that controls eight waveguide switches, for example,
you could create a different data object for each of the switch positions. Your driver would then
contain eight data objects, called “Switch position 1”, “Switch position 2”, “Switch position 3”, etc.
all the way up to “Switch position 8”.

Alternatively, you could create a single data object called “Switch position” which has a digital
parameter to specify the switch number. That data object would not, in fact, be a single data ob-
ject, but eight objects in one, with eight different values. Whenever you wanted to access the
value of the object, e.g. in a register source, you would have to specify which of the eight objects
you are interested in by specifying a value for the switch number parameter.

So, a data object that has no parameters is a single object with a single value. An object that has
parameters, however is really a group of objects, each with its own value.

There are four types of parameters an object can have:

Bistate Parameters
Bistate parameters can have a value of ON or OFF.

Digital Parameters
Digital parameters have an integer number between 0 and 4,294,967,295 as their value.

Analog Parameters
Analog parameters can have almost any numerical value, including negative values and fractions.

String Parameters
String parameters can have any arbitrary data as a value.

Usually, only digital parameters are used for data objects.

Parameter Value Inheritance

If a data object has a parameter of the same tag and type as a command or other object(s) it de-
pends on, it can pass the value of that parameter on to the command or other object. It is then
said to inherit the parameter from the command or object(s) it depends on.

Let us say, for example, that your driver has a “Switch position” data object that has a digital pa-
rameter called “Switch number”. If this object gets its value from a “Query switch position” com-
mand that also has digital parameter called “Switch number”, the same switch number will be
used by both. This means that the “Switch position” object with a switch number of 1 will auto-
matically get its value from the “Query switch position” command with a switch number of 1; the
“Switch position” object for switch number 2 will get its value from the “Query switch position”
command for switch number 2, etc.. The object will always use the command with the same
switch number as itself.

 Page 10

Developing U.P.M.A.C.S. Device Drivers How Device Drivers Work

 Page 11

Parameters are inherited if:

1. The data object and the command have a parameter with the same tag and type

2. The command parameter is used to distinguish between commands (see Command Pa-
rameters on page 8 for details)

3. The data object does not specify a value for the command parameter

If the data object depends on other data objects rather than on a command, it will inherit parame-
ters from the other object or objects in the same way. In this case, of course, condition 2. above is
irrelevant, since object parameters are always used to distinguish between objects.

Overview Of SCL Programs

You can include SCL programs in device drivers. For more details on what SCL programs are,
see SCL programs in the Developer’s Manual.

SCL programs are used to evaluate data in processor and summary sources, and to calculate
checksums. Programs written to be used in processor and summary sources or for checksums
must follow certain guidelines. See Programs for Sources, Checksums, and SABus Response
Data in the SCL Language Reference for details.

You can also provide SCL programs to be called by SCL programs from outside the device driver.
This allows you to provide ready-made SCL programs for any tasks related to the equipment.

Device driver programs are edited in program editor windows the same way regular SCL pro-
grams are. The program editor windows for device driver programs do not appear in the main
Development System window, however. Rather, they are grouped together in a separate top-level
window.

Developing U.P.M.A.C.S. Device Drivers Device Driver Objects

DEVICE DRIVER OBJECTS

Device Drivers

You can create, edit, and duplicate device drivers like any other database objects. See Viewing
and Editing Objects in the Developer’s Manual for details on how to create and edit device driv-
ers.

The New Device Driver Dialog

 Tag:
Enter the tag by which the driver is identified. Each driver must have a unique tag.

 Name:
Enter the name of the device driver. Leave this field blank if you want to use the tag as name.

 Page 12

Developing U.P.M.A.C.S. Device Drivers Device Driver Objects

 Parameters:
Shows a list of all the device driver’s parameters. Use the buttons to edit, delete, duplicate, and
create parameters. You can grab the parameters with the mouse and drag them to a new position
in the list to change their order.

See Parameters on page 14 for a description of the New Parameter dialog.

 Number of retries (including first try):
Enter the number of times a command will be resent if there is a timeout. If you specify 1 in this
field, commands will not be resent if there is a timeout. If you specify 3, U.P.M.A.C.S. will try to
send each command up to three times before logging a timeout.

Not all commands in the driver have to use the number of retries you specify here. You can over-
ride the default number of retries in the individual commands.

 Minimum delay between commands:
Some poorly designed equipment will loose data or lock up if a second command is sent immedi-
ately after it responded to the first. If your equipment needs a delay between its response and the
next command, enter that delay here, in seconds. You can enter fractions of a second.

This delay value is applied to all commands sent to the port a device is on, regardless of the
driver the commands belong to. The delay between commands on a port will be the largest of all
the minimum delays specified in the device drivers used by the port’s devices.

 Commands / Data objects and programs:
Use these tabs to select whether the list of command templates and commands or the list of data
objects and SCL programs is shown.

 Command templates:
Shows a list of all the command templates you have defined for the device driver. Use the buttons
to edit, delete, duplicate, and create templates. See Command Templates on page 15 for a de-
scription of the New Command Template dialog. If the device driver dialog shows data objects
and SCL programs instead of command templates and commands, click on the “Commands” tab.

 Commands:
Shows a list of all the commands you have defined for the device driver. Use the buttons to edit,
delete, duplicate, and create commands. See Commands on page 17 for a description of the New
Command dialog. If the device driver dialog shows data objects and SCL programs instead of
command templates and commands, click on the “Commands” tab.

 Data objects:
Shows a list of all the data objects you have defined for the device driver. The list shows the
name, the type, and the source of the object. You can resize the three columns by dragging the
edges of the column headers with the mouse. Click on the “Name” header to sort the objects by
name, click on the “Type” header to sort them by type, and on the “Source” header to sort by the
source.

The list also shows little icons next to the objects that tell you what type they are:

 Bistate Object

 Digital Object

 Analog Object

 String Object

Use the buttons to edit, delete, duplicate, and create. See Data Objects on page 18 for a descrip-
tion of the New Data Object dialog. If the device driver dialog shows command templates and
commands instead of data objects and SCL programs, click on the “Data objects and programs”
tab.

 Page 13

Developing U.P.M.A.C.S. Device Drivers Device Driver Objects

 Programs:
Shows a list of all the SCL programs you have defined for the device driver. Use the buttons to
edit, delete, duplicate, and create commands. If you press the “Edit” button, an SCL program edi-
tor will appear to allow you to edit the program code. To edit the properties of the program, press
the “Properties...” button.

See SCL Programs on page 19 for a description of the New Program dialog. If the device driver
dialog shows command templates and commands instead of data objects and SCL programs,
click on the “Data objects and programs” tab.

 Error Handling:
Press this button to edit error codes and error handling for the driver. See Error Handling on page
20 for a description of the Error Handling dialog.

 Init Sequence:
Press this button to edit the driver’s initialization sequence. See Initialization Sequence on page
22 for a description of the Initialization Sequence dialog.

Parameters

Parameters include device driver parameters, command template parameters, command pa-
rameters, and data object parameters.

The New Parameter Dialog

 Tag:
Enter the tag by which the parameter is identified. Each parameter in an object must have a
unique tag.

 Type:
Select the parameter’s type.

 Value names:
Press this button to assign names to the values of a digital parameter. The value of a digital pa-
rameter that has value names is specified by selecting a value from a list of all the value names,
rather than entering a number. You should use value names if a digital parameter represents a
number of different settings or choices (e.g. local / remote / remote front panel mode), rather than
an actual number.

 Used to distinguish between commands:
This check box appears only in dialogs for command parameters. Check this box if you want to
use the parameter to distinguish between commands. See Command Parameters on page 8 for
details.

 Page 14

Developing U.P.M.A.C.S. Device Drivers Device Driver Objects

Command Templates

A command template is a pattern on which one or more commands are based. The command
template describes the format of the command data, as well as the format of any response the
equipment might send. The template also provides default values for the timeout and the size of
the response buffer.

Some equipment sends an error response if a command was badly formatted or could not be
executed for some other reason. You can specify the format of a regular (valid) response, and of
an error response. If an error response is received, any error codes are extracted from it, and the
actions you specified in the error handling of the device driver are taken. See Error Handling on
page 20 for more details.

If you specify both an error and a valid response, make sure you provide enough information to
tell the two apart. If a response received from the equipment matches the format you specified for
a valid response and the format you specified for an error response, it is assumed to be an error
response. It is hence important that valid responses returned by the equipment do not match the
error response you specified.

The New Command Template Dialog

 Tag:
Enter the tag by which the template is identified. Each command template in a device driver must
have a unique tag.

 Parameters:
Shows a list of all the template’s parameters. Use the buttons to edit, delete, duplicate, and cre-
ate parameters. You can grab the parameters with the mouse and drag them to a new position in
the list to change their order.

See Parameters on page 14 for a description of the New Parameter dialog.

 Command expects / doesn’t expect a response:
Select whether the equipment sends a response to the commands based on this template. Do not
select “Command doesn’t expect a response” if the equipment sends any data, even if you do not
plan on using it.

 Page 15

Developing U.P.M.A.C.S. Device Drivers Device Driver Objects

 Default timeout:
Enter the maximum time U.P.M.A.C.S. will wait for the equipment to return a response. If no valid
response has been received after the number of seconds specified, the command is resent, or a
timeout is reported. You can enter fractions of a second.

Not all commands based on the template have to use the timeout value you specify here. You
can override the default timeout in the individual commands.

This field only applies to commands that expect a response.

 Default buffer size:
Enter the size of the data buffer here. The data buffer must be large enough to hold all of the data
the equipment sends. If the response has a fixed length, enter that length here. If it has a variable
length, enter a buffer size large enough to hold the largest possible response. If a response is too
long to fit in the buffer, U.P.M.A.C.S. will not recognize it as valid, even if it is.

Not all commands based on the template have to use the buffer size you specify here. You can
override the default buffer size in the individual commands.

This field only applies to commands that expect a response.

 Delay before next command:
Enter the number of seconds to wait before sending the next command after commands based
on this template. You can enter fractions of a second. This field only applies to commands that do
not expect a response.

 Command elements:
Shows a list of all the command elements in the order they will be sent. Use the buttons to edit,
delete, duplicate, and create elements. You can grab the elements with the mouse and drag them
to a new position in the list to change their order.

See Commands Elements on page 25 for a description of the different types of command ele-
ments.

 Valid response / Error response:
Use these tabs to select whether the list of response elements for a valid response or an error
response is shown.

This selection only applies to commands that expect a response.

 Response elements:
Shows a list of all the response elements in the order they should appear in the response. Use
the buttons to edit, delete, duplicate, and create elements. You can grab the elements with the
mouse and drag them to a new position in the list to change their order.

A comand template has two sets of response elements: one describes a valid response, the other
describes an error response. Which of the response elements are shown depends on the selec-
tion of the Valid response / Error response tab described above.

See Responses Elements on page 41 for a description of the different types of response ele-
ments.

This field only applies to commands that expect a response.

 Error Handling:
Click this button to specify default values for the device driver’s error codes. You can specify val-
ues to be used for error codes that do not appear in the error response of the equipment. The
error codes you specify will only be used if an error response is received.

This field only applies to commands that have an error response, and whose device driver has at
least one error code. See Error Handling on page 20 for details on error codes.

 Page 16

Developing U.P.M.A.C.S. Device Drivers Device Driver Objects

Commands

Commands are sent to equipment to query data or change settings. Each command is based on
a command template, which describes the format of the command data and of any response. The
command merely specifies the content of any command data command elements and the values
of any parameters the template may have.

The New Command Dialog

 Tag:
Enter the tag by which the command is identified. Each command in a device driver must have a
unique tag.

 Parameters:
Shows a list of all the command’s parameters. Use the buttons to edit, delete, duplicate, and cre-
ate parameters. You can grab the parameters with the mouse and drag them to a new position in
the list to change their order.

See Parameters on page 14 for a description of the New Parameter dialog.

 Template:
Select the template upon which the command is to be based. Specify values for all the template
parameters immediately below. In the sample dialog, the command uses a template that has one
string parameter called “Opcode”.

If you do not specify a value for a particular template parameter (i.e., leave the field blank), a de-
fault value will be used. The default value for bistate parameters is OFF, the default value for digi-
tal and analog parameters is 0, and the default value for string parameters is an empty string.

 Page 17

Developing U.P.M.A.C.S. Device Drivers Device Driver Objects

Show as decimal / Show as hex:
If the template has any parameters of type digital that don’t have value names, you can select the
way you want to enter the parameter values here. Select “Show as decimal” to enter the values in
decimal, select “Show as hex” to enter the values in hexadecimal.

Show as text / Show as hex:
If the template has any parameters of type string, you can select the way you want to enter the
parameter values here. See Appendix B: Entering Binary Data in the Developer’s Manual for de-
tails on entering binary data.

 Custom timeout, Custom buffer size:
If your command needs a different timeout or buffer size than the defaults specified in the tem-
plate, check the appropriate box, and enter the value to be used instead. These fields only apply
to commands that expect a response.

 Custom retries:
If your command needs a different number of retries than the default specified in the driver, check
the appropriate box, and enter the new number of retries. This field only applies to commands
that expect a response.

 Template command data:
Select the command data command element of the command’s template whose content you wish
to display on the right. This field only applies to commands that expect a response.

 Content elements:
Shows a list of all the command elements that are used to make up the string of the command
data element selected on the left. The elements appear in the order that they will be sent. Use the
buttons to edit, delete, duplicate, and create elements. You can grab the elements with the
mouse and drag them to a new position in the list to change their order.

See Commands Elements on page 25 for a description of the different types of command ele-
ments.

This field only applies to commands whose templates have at least one command data command
element.

Data Objects

Data objects contain the information extracted from serial responses, as well as any other set-
tings and parameters of the device. All data required by SCL programs, registers, or other data
objects must be contained in data objects.

The New Data Object Dialog

 Page 18

Developing U.P.M.A.C.S. Device Drivers Device Driver Objects

 Tag:
Enter the tag by which the object is identified. Each data object in a device driver must have a
unique tag.

 Parameters:
Shows a list of all the command’s parameters. Use the buttons to edit, delete, duplicate, and cre-
ate parameters. You can grab the parameters with the mouse and drag them to a new position in
the list to change their order.

See Parameters on page 14 for a description of the New Parameter dialog.

 Type:
Select the data type of the object.

 Size:
Select the number of values an analog object has. Use analog objects with more than one value
to hold such data as the trace of a spectrum analyzer. This field is only available if you selected
“Analog object” as the type.

 For internal use only:
Check this box to prevent SCL programs and registers from outside the driver to access this data
object. If you check this box, only data objects and SCL programs that belong to this driver can
access the data object.

 Source type:
Select the source type of the object. See Data Object Sources on page 60 for details on object
sources.

 Value names:
Press this button to assign names to the values of a digital object. The value names can be used
by indicators that represent this object’s value and by SCL programs. You should use value
names if a digital data object represents a number of different settings or choices (e.g. local / re-
mote / remote front panel mode), rather than an actual number.

SCL Programs

SCL programs are used in processor and summary sources, and by checksum command and
response elements. They can also be called by other SCL programs, both from within the driver
and from outside. For a description of the SCL language, see the SCL Language Reference.

Once you have created an SCL program, an SCL Program Editor window will appear to let you
edit the code.

If you select a program in the Programs list, and press the “Edit...” button, the editor window will
appear rather than the Edit Program dialog. To change the properties of a program, select it and
press the “Properties...” button. You can also select “Properties...” from the “Edit” menu when
viewing the program’s code.

 Page 19

Developing U.P.M.A.C.S. Device Drivers Device Driver Objects

The New Program Dialog

 Tag:
Enter the tag by which the program is identified. Each program in a device driver must have a
unique tag.

 Abort execution after ... instructions:
Check this box if you want to guard the program against endless loops. The program will be
aborted after the specified number of SCL commands or assignments have been executed. Pro-
grams used in processor and summary sources have a built-in instruction limit of 500 instructions.
Check this box to specify a greater or smaller limit.

 For internal use only:
Check this box to prevent SCL programs from outside the driver to call this program. If you check
this box, only SCL programs that belong to this driver can call the program.

 Data decoders:
Shows a list of all data decoders defined for this program. Use the buttons, to add, delete, and
edit decoders.

See SCL Data Decoders and Encoders in the Developer’s Manual for details.

 Data encoders:
Shows a list of all data encoders defined for this program. Use the buttons, to add, delete, and
edit encoders.

See SCL Data Decoders and Encoders in the Developer’s Manual for details.

Error Handling

You can specify a number of different types of error codes that the equipment may return. You
can use the error code to decide what action to take when an error occurs. The error codes can
also be retrieved from within an SCL program that sent a serial command.

There are two types of error codes. Numerical error codes can have a value between 0 and
4,294,967,295. String error codes can contain any arbitrary data. Each error code represents a
type of error the equipment returns. Do not create an error code for each possible error that can
occur. Most equipment will only require a single error code, which will take on different values
depending on which error occurred.

Most equipment will only return one type of error code, usually a number or one or two letters.
Some equipment, however, returns error messages along with the error code, or it may return
secondary or sub-error codes. You will need to specify one error code object for each type of er-
ror code returned. For example, if your equipment returns an error code and an error message in

 Page 20

Developing U.P.M.A.C.S. Device Drivers Device Driver Objects

the error response, you should create two error codes, one called “Error Code”, and one called
“Error Message”. If the equipment returns a main error code, and a secondary error code for
some or all errors, you should create two error codes, one called “Main Error Code”, and one
called “Secondary Error Code”. If your equipment returns only a simple error code in the error
response, you should create only one error code called “Error Code”. The names given in these
examples are, of course, only suggestions. You can name your error codes anything you like.

There are three types of actions that U.P.M.A.C.S. can take upon receiving an error response:

 Ignore the error

 Stop the polling sequence and reinitialize the device

 Retry sending the command

You can specify which action is to be taken when receiving what error.

The Error Handling Dialog

 Error codes:
Shows a list of all error codes. Use the buttons to edit, delete, duplicate, and create error codes.

Each error code represents a type of error the equipment returns. Do not create an error code for
each possible error that can occur. Most equipment will only require a single error code, which
will take on different values depending on which error occurred.

 Main error code:
Select the error code whose value is used to decide what action to take. If you do not specify a
main error code, all errors will be treated the same.

 Delay between retries:
Enter the number of seconds to wait before sending the command again if it has to be resent.
You can enter fractions of a second.

 Maximum number of retries (including first try):
Enter the number of times a command will be resent if need be. If you specify 3, U.P.M.A.C.S. will
try to send each command up to three times before giving up.

 Don’t do anything for / Reinitialize after / Retry after these errors:
Select for which error codes to take each of the three actions.

None:
Select this option to never perform this action, regardless of the error returned.

 Page 21

Developing U.P.M.A.C.S. Device Drivers Device Driver Objects

Only these:
Select this option if you would like tp specify specific errors for which the action should be per-
formed. If the main error code you selected is a numerical error code, enter the desired values
separated by commas. If the main error is a string error code, enter a regular expression that
matches all the desired error codes.

See Appendix A: Regular Expressions in the Developer’s Manual for details on regular expres-
sions.

All other:
Select this option to perform this action for all errors for which you didn’t specify anything else.
You must select this option for one and only one of the actions.

Initialization Sequence

You can specify a default initialization sequence for the device. The initialization sequence con-
sists of a number of commands that are sent to initialize the equipment.

There are three types of commands in the initialization sequence:

 First-time initialization commands that are sent when the port is first opened

 Reinitialization commands that are sent when the device needs to be reinitialized after a
timeout or error

 Common initialization commands that are sent in both cases

You should only include those commands in the initialization sequence that have to be sent for all
devices. You can specify additional commands when you add a device that uses the driver to a
serial port. Each device also has the option to ignore the default initialization sequence.

When the port is first opened, the initialization commands are sent in the following order:

1. First-time initialization commands specified in the driver, in the order in which they appear
in the list

2. Common initialization commands specified in the driver, in the order in which they appear
in the list

3. First-time initialization commands specified in the device, in the order in which they ap-
pear in the device’s initialization sequence

4. Common initialization commands specified in the device, in the order in which they ap-
pear in the device’s initialization sequence

When a timeout occurs, or when an error occurs that requires reinitialization (see Error Handling
on page 20 for details), the initialization commands are sent in the following order:

1. Reinitialization commands specified in the driver, in the order in which they appear in the
list

2. Common initialization commands specified in the driver, in the order in which they appear
in the list

3. Reinitialization commands specified in the device, in the order in which they appear in the
device’s initialization sequence

4. Common initialization commands specified in the device, in the order in which they ap-
pear in the device’s initialization sequence

 Page 22

Developing U.P.M.A.C.S. Device Drivers Device Driver Objects

The Initialization Sequence Dialog

 First-time initialization / Reinitialization after timeout / Common initialization:
Select which commands should be displayed in the list. These tabs only affect which commands
are displayed, not which type of initialization the driver supports. All drivers always contain all
three types of initialization sequence (though some of them may be empty).

 Commands to send:
Shows a list of all the commands in the initialization sequence in the order in which they will be
sent. Use the tabs to select which initialization sequence is shown in the list.

Use the buttons to edit, delete, duplicate, and add new commands. You can grab the commands
with the mouse and drag them to a new position in the list to change their order.

The New Initialization Command Dialog

 Command:
Select the command to send. Specify values for all the command parameters immediately below.
In the sample dialog, the command has two digital parameter called “Port Number” and “Output
Bits”.

If you do not specify a value for a particular command parameter (i.e., leave the field blank), a
default value will be used. The default value for bistate parameters is OFF, the default value for
digital and analog parameters is 0, and the default value for string parameters is an empty string.

Show as decimal / Show as hex:
If the command has any parameters of type digital that don’t have value names, you can select
the way you want to enter the parameter values here. Select “Show as decimal” to enter the val-
ues in decimal, select “Show as hex” to enter the values in hexadecimal.

 Page 23

Developing U.P.M.A.C.S. Device Drivers Device Driver Objects

 Page 24

Show as text / Show as hex:
If the command has any parameters of type string, you can select the way you want to enter the
parameter values here. See Appendix B: Entering Binary Data in the Developer’s Manual for de-
tails on entering binary data.

Developing U.P.M.A.C.S. Device Drivers Commands Elements

COMMANDS ELEMENTS

Overview

Command elements are used in command templates and commands to construct the data string
that will be sent to the equipment. Each command element represents one section of the com-
mand string. The sections are then concatenated to form the final command string.

You create and edit command elements from within the New Command Template and New
Command dialogs. When you create a new command element, you will be asked to select its
type. There are nine types of command elements.

General types of command elements:

 Fixed string

 Delay

Elements that encode the value of one or more parameters:

 Bistate parameter

 Digital parameter (number)

 Digital parameter (strings)

 Analog parameter

 String parameter

 Bistate parameter bits

Special types of command elements:

 Data length

 Checksum

 Command data*

* Command data command elements are only used by command templates, not by commands

Fixed String Commands Elements

Fixed string command elements are used for the parts of the command that never change, e.g.
start and stop bytes.

The New Fixed String Element Dialog

 Page 25

Developing U.P.M.A.C.S. Device Drivers Commands Elements

 String:
Enter the data to be sent here. See Appendix B: Entering Binary Data in the Developer’s Manual
for details.

 Show as text / Show as hex:
Select the way you want to enter the data string. See Appendix B: Entering Binary Data in the
Developer’s Manual for details on entering binary data.

Delay Commands Elements

Delay command elements don’t actually encode any data, but cause U.P.M.A.C.S. to wait be-
tween sending the data of the previous and the next command element.

The New Delay Element Dialog

 Delay:
Enter the delay time to wait. You can enter fractions of a second.

Bistate Parameter Commands Elements

Bistate parameter command elements encode the value of a bistate parameter. Command ele-
ments for command templates can encode device driver or template parameters; command ele-
ments for commands can encode device driver or command parameters.

The New Bistate Parameter Element Dialog

 Parameter:
Select the parameter whose value you want to encode. Device driver parameters and command
template or command parameters are shown in the same list.

 String for on:
Enter the data to be sent if the parameter is ON. See Appendix B: Entering Binary Data in the
Developer’s Manual for details on entering binary data.

 String for off:
Enter the data to be sent if the parameter is OFF. See Appendix B: Entering Binary Data in the
Developer’s Manual for details on entering binary data.

 Page 26

Developing U.P.M.A.C.S. Device Drivers Commands Elements

 Show as text / Show as hex:
Select the way you want to enter the data strings. See Appendix B: Entering Binary Data in the
Developer’s Manual for details.

Digital Parameter (Number) Command Elements

Digital parameter (number) command elements encode the value of a digital parameter as a
number. Command elements for command templates can encode device driver or template pa-
rameters; command elements for commands can encode device driver or command parameters.

The New Digital Parameter Element Dialog

 Parameter:
Select the parameter whose value you want to encode. Device driver parameters and command
template or command parameters are shown in the same list.

 Encoding:
Select the encoding method for the value. U.P.M.A.C.S. supports the following encoding meth-
ods:

Byte:
A single byte (character) in the command string is used to represent the parameter as an 8-bit
value. Requires a fixed width of 1.

Multibyte:
Two or more bytes (characters) in the command string are used to represent the parameter as a
16, 24, or 32-bit value. You can choose between lo-hi and hi-lo byte ordering. If you select lo-hi
byte ordering, the least significant byte (the lower 8 bits) will be sent first; if you select hi-lo byte
ordering, the most significant byte (the upper 8 bits) will be sent first. The multibyte encoding
method requires a fixed width of 2, 3, or 4.

BCD:
The parameter is encoded using Binary Coded Decimal encoding. In BCD encoding, each nibble
(hex digit) in a byte represents one decimal digit. The number 20,841,057 would be encoded as
the byte (character) values hex 20 (32), hex 84 (132), hex 10 (16), and hex 57 (87). The BCD
encoding method requires a fixed width.

 Page 27

Developing U.P.M.A.C.S. Device Drivers Commands Elements

Decimal, Hexadecimal, Binary, Octal:
The parameter is written out as a decimal, hexadecimal, binary, or octal number using ASCII
characters.

Do not confuse the byte/multibyte and binary encoding methods. The binary encoding writes the
parameter out as a series of ASCII characters 1 (hex 31) and 0 (hex 30), it does not encode it
using the individual bits of each byte.

 Use fixed width:
Check this check box if you want the resulting string to be a fixed number of bytes (characters)
long. Specify the number of bytes in the edit box.

You must check this box for the byte, multibyte, and BCD encoding methods.

Pad with zeros / Pad with spaces / Custom padding character:
Specify the character that is to be used to pad the parameter to the fixed width if it is too short.
This setting only applies to the decimal, hexadecimal, binary, and octal encodings.

Align left / Align right:
Select whether the number should be left or right aligned within the fixed width. If the number is
left aligned, any padding characters will be added to the end the number; if it is right aligned, they
will be added to the beginning. This setting only applies to the decimal, hexadecimal, binary, and
octal encodings.

 Use capital letters A-F / small letters a-f as hex digits:
Select whether capital or small letters should be used for hex digits. This setting only applies to
the hexadecimal encoding.

Digital Parameter (Strings) Command Elements

Digital parameter (strings) command elements encode the value of a digital parameter. You ex-
plicitly specify the data string to be used for the different values. Command elements for com-
mand templates can encode device driver or template parameters; command elements for com-
mands can encode device driver or command parameters.

The New Digital Parameter Element Dialog

 Page 28

Developing U.P.M.A.C.S. Device Drivers Commands Elements

 Parameter:
Select the parameter whose value you want to encode. Device driver parameters and command
template or command parameters are shown in the same list.

 Strings to send for values:
Shows a list of all values that you specified data strings for, together with their strings. Use the
buttons to edit, delete, duplicate, and add values.

 String for other values:
Enter the data to be sent for all values that do not appear in the list above. See Appendix B: En-
tering Binary Data in the Developer’s Manual for details on entering binary data.

 Show as text / Show as hex:
Select the way you want to enter the data strings. See Appendix B: Entering Binary Data in the
Developer’s Manual for details.

Analog Parameter Commands Elements

Analog parameter command elements encode the value of an analog parameter. Command ele-
ments for command templates can encode device driver or template parameters; command ele-
ments for commands can encode device driver or command parameters.

You can provide a factor and an offset to be applied to the parameter before formatting it. The
number written to the data string is calculated from the parameter as follows:

number = parameter · factor + offset

To use the parameter unaltered, specify a factor of 1 and an offset of 0.

The New Analog Parameter Element Dialog

 Page 29

Developing U.P.M.A.C.S. Device Drivers Commands Elements

 Parameter:
Select the parameter whose value you want to encode. Device driver parameters and command
template or command parameters are shown in the same list.

 Factor:
Enter the factor with which the parameter is to be multiplied before writing it to the data string.
The factor is applied before the offset.

 Offset:
Enter the offset that is to be added to the parameter before writing it to the data string. The offset
is applied after the factor.

 Encoding:
Select the encoding method for the value. U.P.M.A.C.S. supports the following encoding meth-
ods:

Byte:
A single byte (character) in the command string is used to represent the parameter as an 8-bit
value. If you select signed byte encoding, the most significant bit of the byte will be used to de-
note the sign in the standard way (-1 is $FF, -2 is $FE, etc.). If you select unsigned byte encod-
ing, the sign of negative numbers will be ignored, i.e. -20 will be encoded the same as 20. The
byte encoding method requires a fixed width of 1.

Multibyte:
Two or more bytes (characters) in the command string are used to represent the parameter as a
16, 24, or 32-bit value. You can choose between lo-hi and hi-lo byte ordering. If you select lo-hi
byte ordering, the least significant byte (the lower 8 bits) will be sent first; if you select hi-lo byte
ordering, the most significant byte (the upper 8 bits) will be sent first. If you select signed mul-
tibyte encoding, the most significant bit of the most significant byte will be used to denote the sign
in the standard way (for 16-bit values -1 is $FFFF, -2 is $FFFE, etc.). If you select unsigned mul-
tibyte encoding, the sign of negative numbers will be ignored, i.e. -20 will be encoded the same
as 20. The multibyte encoding method requires a fixed width of 2, 3, or 4.

BCD:
The parameter is encoded using Binary Coded Decimal encoding. In BCD encoding, each nibble
(hex digit) in a byte represents one decimal digit. The number 20,841,057 would be encoded as
the byte (character) values hex 20 (32), hex 84 (132), hex 10 (16), and hex 57 (87). The BCD
encoding method requires a fixed width.

Decimal, Hexadecimal, Binary, Octal:
The parameter is written out as a decimal, hexadecimal, binary, or octal number using ASCII
characters.

Do not confuse the byte/multibyte and binary encoding methods. The binary encoding writes the
parameter out as a series of ASCII characters 1 (hex 31) and 0 (hex 30), it does not encode it
using the individual bits of each byte.

 Show positive (+) sign:
Check this check box if you want a plus sign to be shown for positive values. The plus sign does
not actually have to be the “+” character. You can specify any character you want.

This setting only applies to the decimal encoding.

 Show negative (-) sign:
Check this check box if you want a minus sign to be shown for negative values. The minus sign
does not actually have to be the “-” character. You can specify any character you want.

This setting only applies to the decimal encoding.

 Page 30

Developing U.P.M.A.C.S. Device Drivers Commands Elements

 Use thousands separator:
Check this check box if you want digits to be separated into groups of three using a thousands
separators (usually a comma). If you check this box, you must also specify the actual character
used to group digits.

This setting only applies to the decimal encoding.

 Number of decimals:
For the decimal encoding, this field allows you to specify the number of digits shown after the
decimal point. If you do not want decimal digits or a decimal point, enter 0 here.

For all other encodings, this field allows you to specify the number of implied decimals. Implied
decimals are a way of encoding fractions without using a decimal point by multiplying it with a
power of ten before encoding it. A number that is encoded using 3 implied decimals, for example,
will be multiplied by 1000 before it is encoded. This will move the three decimals from the right to
the left of the decimal point, and the decimal point will no longer be needed. 21.304, for example,
will simply be encoded as 21304.

You can use implied decimals with the decimal encoding method as well. Simply set the required
number of decimals in the “Number of decimals” field, and uncheck the “Show decimal marker”
check box described below. No decimal point will then be shown.

Please note that the implied decimals for the hexadecimal, octal, and binary encoding methods
are decimal fractions, not hexadecimal, octal or binary fractions. In hexadecimal encoding with
three implied decimals, 43.249 (which is ~2B.3FC in hex) will be written as A8F1 (which is 43249
in decimal) rather than 2B3FC. In other words, the number is always multiplied by powers of 10,
even if the encoding method uses base 16, 2 , or 8.

Show decimal marker:
Clear this check box if you do not want a decimal point to be shown (implied decimals). If you
leave this box checked, you can specify the character to be used as a decimal marker. The deci-
mal marker does not have to be a period, you can use any character you like. This setting only
applies to the decimal encoding.

 Use fixed width:
Check this check box if you want the resulting string to be a fixed number of bytes (characters)
long. Specify the number of bytes in the edit box.

You must check this box for the byte, multibyte, and BCD encoding methods.

Pad with zeros / Pad with spaces / Custom padding character:
Specify the character that is to be used to pad the parameter to the fixed width if it is too short.
Only applies to the decimal, hexadecimal, binary, and octal encodings.

Alignment:
Choose the alignment of the data within the fixed width. You can choose to have any padding
characters added before the sign, between the sign and the number, or after the number. If the
sign is not shown, the Sign-padding-number and Padding-sign-number alignments are the same.
This setting only applies to the decimal, hexadecimal, binary, and octal encodings.

 Use capital letters A-F / small letters a-f as hex digits:
Select whether capital or small letters should be used for hex digits. Only applies to the hexa-
decimal encoding.

 Use exponential notation:
Check this box to use exponential (scientific) notation with the decimal encoding method.

Number of non-decimal digits in the mantissa:
Enter the number of digits that should appear on the left of the decimal point of the mantissa (the
part of the number that is not the exponent). Note that this setting does not necessarily reflect the
number of digits that actually appear before the decimal point. It is merely used to determine the

 Page 31

Developing U.P.M.A.C.S. Device Drivers Commands Elements

range of the mantissa. If you specify a value of 0, the mantissa will always be between 0 and 1. If
you specify 1, it will be either 0, or between 1 and 10, etc.. The number 13895.468, for example,
will be shown as 0.13895468E+5 with 0 mantissa digits, as 1.38954680E+4 with one digit, and as
138.95468000E+2 with three digits. The number 0 will always be shown as 0.00000000E+0, re-
gardless of the number of mantissa digits specified. If you want to force 0 to be shown as
000.00000000E+0, you must specify a fixed width, and “0” as the padding character.

Number of digits in the exponent:
Enter the number of digits shown in the exponent. Unlike the number of digits in the mantissa
digits, the exponent will always have exactly the number of digits specified here.

Prefix for positive / negative exponent:
Enter the exponent markers for positive and negative exponents here. The exponent markers
must include the sign of the exponent. Usually, the positive exponent marker is “E+” or “e+”, and
the negative marker is “E-” or “e-”. If you want to omit the plus sign for positive exponents, specify
“E” or “e” for the positive exponent prefix. The exponent prefixes can be any arbitrary data. See
Appendix B: Entering Binary Data in the Developer’s Manual for details on entering binary data.

Show as text / Show as hex:
Select the way you want to enter the exponent prefixes. See Appendix B: Entering Binary Data in
the Developer’s Manual for details.

String Parameter Commands Elements

String parameter command elements encode the value of a string parameter. Command ele-
ments for command templates can encode device driver or template parameters; command ele-
ments for commands can encode device driver or command parameters.

The New String Parameter Element Dialog

 Parameter:
Select the parameter whose value you want to encode. Device driver parameters and command
template or command parameters are shown in the same list.

 Use fixed width:
Check this check box if you want the resulting string to be a fixed number of bytes (characters)
long. Specify the number of bytes in the edit box.

Pad with spaces / Custom padding character:
Specify the character that is to be used to pad the parameter to the fixed width if it is too short.

 Page 32

Developing U.P.M.A.C.S. Device Drivers Commands Elements

Align left / Align right:
Select whether the string should be left or right aligned within the fixed width. If the number is left
aligned, any padding characters will be added to the end the string, if it is right aligned, they will
be added to the beginning.

 Replace non-printable chars:
Check this check box if you want all non-printable characters (characters other than ASCII $20-
ASCII $7E) in the parameter replaced. Enter the character that you would like to replace them
with in the box provided.

Bistate Parameter Bits Commands Elements

Bistate parameter bits command elements encode the value of up to eight bistate parameters in
the bits of a one-byte number. Command elements for command templates can encode device
driver or template parameters; command elements for commands can encode device driver or
command parameters.

The New Bistate Parameter Bits Element Dialog

 Bit 0-7:
Select the value of the corresponding bit. Select <always 0> to force the bit to 0, select <always
1> to force the bit to one, or select the parameter you want the bit to reflect. If you leave the “In-
vert” check box cleared, the bit will be set if the parameter is ON, and cleared if it is OFF. If you
check the box, the bit will be cleared if the parameter is ON, and set if it is OFF. Device driver
parameters and command template or command parameters are shown in the same list.

 Encoding:
Select the encoding method for the value. U.P.M.A.C.S. supports the following encoding meth-
ods:

Byte:
A single byte (character) in the command string is used to represent the number as an 8-bit
value. Requires a fixed width of 1.

Multibyte:
Two or more bytes (characters) in the command string are used to represent the number as a 16,
24, or 32-bit value. You can choose between lo-hi and hi-lo byte ordering. If you select lo-hi byte
ordering, the least significant byte (the lower 8 bits) will be sent first; if you select hi-lo byte order-
ing, the most significant byte (the upper 8 bits) will be sent first. The multibyte encoding method
requires a fixed width of 2, 3, or 4.

 Page 33

Developing U.P.M.A.C.S. Device Drivers Commands Elements

BCD:
The number is encoded using Binary Coded Decimal encoding. In BCD encoding, each nibble
(hex digit) in a byte represents one decimal digit. The number 20,841,057 would be encoded as
the byte (character) values hex 20 (32), hex 84 (132), hex 10 (16), and hex 57 (87). The BCD
encoding method requires a fixed width.

Decimal, Hexadecimal, Binary, Octal:
The number is written out as a decimal, hexadecimal, binary, or octal number using ASCII char-
acters.

Do not confuse the byte/multibyte and binary encoding methods. The binary encoding writes the
number out as a series of ASCII characters 1 (hex 31) and 0 (hex 30), it does not encode it using
the individual bits of each byte.

 Use fixed width:
Check this check box if you want the resulting string to be a fixed number of bytes (characters)
long. Specify the number of bytes in the edit box.

You must check this box for the byte, multibyte, and BCD encoding methods.

Pad with zeros / Pad with spaces / Custom padding character:
Specify the character that is to be used to pad the number to the fixed width if it is too short. This
setting only applies to the decimal, hexadecimal, binary, and octal encodings.

Align left / Align right:
Select whether the number should be left or right aligned within the fixed width. If the number is
left aligned, any padding characters will be added to the end the number; if it is right aligned, they
will be added to the beginning. This setting only applies to the decimal, hexadecimal, binary, and
octal encodings.

 Use capital letters A-F / small letters a-f as hex digits:
Select whether capital or small letters should be used for hex digits. This setting only applies to
the hexadecimal encoding.

Data Length Commands Elements

Data length command elements calculate and encode the length of the data produced by one or
more command elements that follow it.

Note: The data length of a checksum element will only be calculated correctly of the
checksum element has a fixed width.

 Page 34

Developing U.P.M.A.C.S. Device Drivers Commands Elements

The New Data Length Element Dialog

 Char size:
Select the size of the characters. If you select 8 bits, the length will be the number of bytes in the
data. If you select 16, 24, or 32 bits, the length will be the number of 16, 24, or 32 bit words in the
data. Most equipment uses 8-bit characters.

Please note that 7-bit characters are represented internally using 8 bits, with the highest bit being
always 0. Select a character size of 8 bits if the equipment uses 7-bit characters.

 Exclude ... after this:
By default, data length command elements calculate the total length of all command elements
that follow it. If you want to exclude the length of the data produced by some command elements
immediately after this one, enter the number of elements to exclude here. If you specify 2 in this
field, the length of the data produced by the two next command elements will not be included in
the data length value.

 Exclude ... from the end:
By default, data length command elements calculate the total length of all command elements
that follow it. If you want to exclude the length of the data produced by some command elements
at the end of the command string, enter the number of elements to exclude here. If you specify 2
in this field, the length of the data produced by the last two command elements in the list will not
be included in the data length value.

 Offset:
If, for some reason, you need to add a fixed number to the calculated data length, enter that num-
ber here. To subtract a fixed number, enter a negative number.

 Encoding:
Select the encoding method for the value. U.P.M.A.C.S. supports the following encoding meth-
ods:

Byte:
A single byte (character) in the command string is used to represent the data length as an 8-bit
value. Requires a fixed width of 1.

 Page 35

Developing U.P.M.A.C.S. Device Drivers Commands Elements

Multibyte:
Two or more bytes (characters) in the command string are used to represent the data length as a
16, 24, or 32-bit value. You can choose between lo-hi and hi-lo byte ordering. If you select lo-hi
byte ordering, the least significant byte (the lower 8 bits) will be sent first; if you select hi-lo byte
ordering, the most significant byte (the upper 8 bits) will be sent first. The multibyte encoding
method requires a fixed width of 2, 3, or 4.

BCD:
The length is encoded using Binary Coded Decimal encoding. In BCD encoding, each nibble (hex
digit) in a byte represents one decimal digit. The number 20,841,057 would be encoded as the
byte (character) values hex 20 (32), hex 84 (132), hex 10 (16), and hex 57 (87). The BCD encod-
ing method requires a fixed width.

Decimal, Hexadecimal, Binary, Octal:
The data length is written out as a decimal, hexadecimal, binary, or octal number using ASCII
characters.

Do not confuse the byte/multibyte and binary encoding methods. The binary encoding writes the
data length out as a series of ASCII characters 1 (hex 31) and 0 (hex 30), it does not encode it
using the individual bits of each byte.

 Use fixed width:
Check this check box if you want the resulting string to be a fixed number of bytes (characters)
long. Specify the number of bytes in the edit box.

You must check this box for the byte, multibyte, and BCD encoding methods.

Pad with zeros / Pad with spaces / Custom padding character:
Specify the character that is to be used to pad the data length to the fixed width if it is too short.
This setting only applies to the decimal, hexadecimal, binary, and octal encodings.

Align left / Align right:
Select whether the number should be left or right aligned within the fixed width. If the number is
left aligned, any padding characters will be added to the end the number; if it is right aligned, they
will be added to the beginning. This setting only applies to the decimal, hexadecimal, binary, and
octal encodings.

 Use capital letters A-F / small letters a-f as hex digits:
Select whether capital or small letters should be used for hex digits. This setting only applies to
the hexadecimal encoding.

Checksum Command Elements

Checksum command elements calculate and encode the checksum of the data produced by one
or more command elements that precede it.

 Page 36

Developing U.P.M.A.C.S. Device Drivers Commands Elements

The New Checksum Element Dialog

 Exclude ... from the start:
By default, checksum command elements calculate the checksum of all command elements that
precede it. If you want to exclude the data produced by some command elements at the begin-
ning of the command string, enter the number of elements to exclude here. If you specify 2 in this
field, the data produced by the first two command elements in the list will not be included in the
checksum calculation.

 Exclude ... after this:
By default, checksum command elements calculate the checksum of all command elements that
precede it. If you want to exclude the data produced by some command elements immediately
before this one, enter the number of elements to exclude here. If you specify 2 in this field, the
data produced by the last two command elements before this one will not be included in the
checksum calculation.

 Type:
Select the type of checksum calculation. U.P.M.A.C.S. supports the following types of check-
sums:

Simple sum:
The checksum is the sum of all the character values in the data string.

You can specify the size of the individual characters. Most equipment uses 8 bits (1 byte) per
character. If you select 16, 24, or 32 bit characters, each group of 2, 3, or 4 bytes will be treated
as a single character value. For character sizes greater than 8 bits, you can also choose between
lo-hi and hi-lo byte ordering. If you select lo-hi byte ordering, the first byte in each character is the
least significant byte (the lower 8 bits); if you select hi-lo byte ordering, the first byte in each char-
acter is the most significant byte (the upper 8 bits). Select the size of each character, as well as
the byte ordering (lo-hi or hi-lo), in the “Char size” field.

Please note that 7-bit characters are represented internally using 8 bits, with the highest bit being
always 0. Select a character size of 8 bits if the equipment uses 7-bit characters.

 Page 37

Developing U.P.M.A.C.S. Device Drivers Commands Elements

LRC:
Longitudinal redundancy check. The checksum is calculated by XORing all the character values
together.

You can specify the size of the individual characters. Most equipment uses 8 bits (1 byte) per
character. If you select 16, 24, or 32 bit characters, each group of 2, 3, or 4 bytes will be treated
as a single character value. For character sizes greater than 8 bits, you can also choose between
lo-hi and hi-lo byte ordering. If you select lo-hi byte ordering, the first byte in each character is the
least significant byte (the lower 8 bits); if you select hi-lo byte ordering, the first byte in each char-
acter is the most significant byte (the upper 8 bits). Select the size of each character, as well as
the byte ordering (lo-hi or hi-lo), in the “Char size” field.

Please note that 7-bit characters are represented internally using 8 bits, with the highest bit being
always 0. Select a character size of 8 bits if the equipment uses 7-bit characters.

CRC-16, CRC-CCITT, CRC-32:
Cyclic redundancy check. The checksum is calculated using a binary polynomial. The different
CRCs use different standardized polynomials.

The CRC algorithm has two arbitrary parameters: The initial value (sometimes called the seed) of
the calculation, and a value that the final result is XORed with. U.P.M.A.C.S. provides default val-
ues for these parameters, shown in the “Initial value” and “final xor mask” boxes. Select the
“Show as decimal” or “Show as hex” radio buttons to view the values as decimal or hex numbers.

If you need to use values other than those provided, you can check the “Customize algorithm”
check box and edit the parameters. CRC-16 and CRC-CCITT use 16-bit polynomials, so the pa-
rameters must be 16-bit numbers. CRC-32 uses a 32-bit polynomial, so the parameters are 32-bit
numbers.

Modulo 128:
The checksum is the sum of all the data bytes, modulo 128. This is equivalent to ANDing the
checksum with hex 7F. Only the 7 least significant bits of the sum are used.

Modulo 256:
The checksum is the sum of all the data bytes, modulo 256. This is equivalent to ANDing the
checksum with hex FF. Only the least significant byte of the sum is used.

Printable checksum:
This is a special checksum designed to produce a checksum that is always a printable character.
It is calculated as follows:

 Subtract 32 from each character code,

 add the results together,

 take the sum modulo 95,

 add 32 to the result.

This type of checksum is used, for example, by Miteq equipment.

 Page 38

Developing U.P.M.A.C.S. Device Drivers Commands Elements

Example:

To calculate the checksum for the string “Prometheus”, proceed as follows:

Subtract 32 from each character code:

Char: P r o m e t h e u s

Code: 80 114 111 109 101 116 104 101 117 115

-32 -32 -32 -32 -32 -32 -32 -32 -32 -32

result: 48 82 79 77 69 84 72 69 85 83

Add the results together:

48 + 82 + 79 + 77 + 69 + 84 + 72 + 69 + 85 + 83 = 748

Take the sum modulo 95:

748 mod 95 = 83

And add 32 to the result:

83 + 32 = 115 (“ s “)

Processor:
If you need a checksum calculation that is not listed above, you can write an SCL program to cal-
culate the checksum. Select the program that will do the calculation from the “Program” list, and
press the “Args...” button to specify program arguments. See Specifying Arguments for SCL Pro-
grams in the Developer’s Manual for a description of the Edit Program Arguments dialog.

See Programs for Sources, Checksums, and SABus Response Data in the SCL Language Ref-
erence for details on writing SCL programs that calculate checksums.

 Encoding:
Select the encoding method for the checksum. U.P.M.A.C.S. supports the following encoding
methods:

Byte:
A single byte (character) in the command string is used to represent the checksum as an 8-bit
value. Requires a fixed width of 1.

Multibyte:
Two or more bytes (characters) in the command string are used to represent the checksum as a
16, 24, or 32-bit value. You can choose between lo-hi and hi-lo byte ordering. If you select lo-hi
byte ordering, the least significant byte (the lower 8 bits) will be sent first; if you select hi-lo byte
ordering, the most significant byte (the upper 8 bits) will be sent first. The multibyte encoding
method requires a fixed width of 2, 3, or 4.

BCD:
The checksum is encoded using Binary Coded Decimal encoding. In BCD encoding, each nibble
(hex digit) in a byte represents one decimal digit. The number 20,841,057 would be encoded as
the byte (character) values hex 20 (32), hex 84 (132), hex 10 (16), and hex 57 (87). The BCD
encoding method requires a fixed width.

Decimal, Hexadecimal, Binary, Octal:
The checksum is written out as a decimal, hexadecimal, binary, or octal number using ASCII
characters.

Do not confuse the byte/multibyte and binary encoding methods. The binary encoding writes the
checksum out as a series of ASCII characters 1 (hex 31) and 0 (hex 30), it does not encode it
using the individual bits of each byte.

 Use fixed width:
Check this check box if you want the resulting string to be a fixed number of bytes (characters)
long. Specify the number of bytes in the edit box.

You must check this box for the byte, multibyte, and BCD encoding methods.

 Page 39

Developing U.P.M.A.C.S. Device Drivers Commands Elements

Pad with zeros / Pad with spaces / Custom padding character:
Specify the character that is to be used to pad the checksum to the fixed width if it is too short.
This setting only applies to the decimal, hexadecimal, binary, and octal encodings.

Align left / Align right:
Select whether the number should be left or right aligned within the fixed width. If the number is
left aligned, any padding characters will be added to the end the number; if it is right aligned, they
will be added to the beginning. This setting only applies to the decimal, hexadecimal, binary, and
octal encodings.

 Use capital letters A-F / small letters a-f as hex digits:
Select whether capital or small letters should be used for hex digits. This setting only applies to
the hexadecimal encoding.

Command Data Command Elements

Command data command elements are only used in command templates, not in commands. The
data string for this type of command element is specified by the command that uses the template,
not by the template itself.

The New Command Data Element Dialog

 Tag:
Enter the tag by which the element is identified. Each command data command element in a tem-
plate must have a unique tag.

 Page 40

Developing U.P.M.A.C.S. Device Drivers Data Object Sources

RESPONSES ELEMENTS

Overview

Response elements are used in command templates to check the data returned by the equipment
in response to a command. Each response element is used to verify the validity of a section of
the response.

You create and edit command elements from within the New Command Template dialog. Each
command template can have a set of response elements that describes a valid response, and a
set that describes an error response.

If you specify both an error and a valid response, make sure you provide enough information to
tell the two apart. If a response received from the equipment matches the format you specified for
a valid response and the format you specified for an error response, it is assumed to be an error
response. It is hence important that valid responses returned by the equipment do not match the
error response you specified.

Each response element can have a condition attached to it. The condition checks the value of
numerical or string value response element to see whether the element should appear in the re-
sponse or not. See Response Element Conditions on page 42 for details.

When you create a new command element, you will be asked to select its type. There are nine
types of command elements.

General types of response elements:

 Regular expression

 Command element

Elements that check response data against the value of a parameter:

 Bistate parameter

 Digital parameter (number)

 Digital parameter (strings)

 Analog parameter

 String parameter

Special types of response elements:

 Numerical value

 String value

 Checksum

 Response data*

 Numerical error code**

 String error code**

* Command data command elements are only used by the valid response

** Error code response elements are only used by the error response

 Page 41

Developing U.P.M.A.C.S. Device Drivers Data Object Sources

Response Element Conditions

Each response element can have a condition attached to it. The condition checks the value of
numerical or string value response element to see whether the element should appear in the re-
sponse or not.

To add, remove or change a condition to a response element press the “Condition...” button in the
New Response Element dialog.

The Response Element Condition Dialog

 The response contains the element only under the following condition:
Check the check box to specify the condition under which the element will appear in the re-
sponse. If you leave the check box blank, the element should always appear in the response.

Select the numerical or string value response element whose value should be checked on the
left. Select the condition in the center. Which conditions appear in the list depends on the type of
the value you selected.

For numerical values, you will get the following options:

is equal to

is not equal to

is less than

is greater than

is less than or equal to

is greater than or equal to

Enter the number you want to compare the value to on the right.

For string values, you will get the following options:

is

is not

contains

does not contain

Enter a regular expression on the right. If you selected is or is not, the expression must (or must
not) match the string exactly. If you select contains or does not contain, the expression merely
has to appear somewhere in the string.

If the value response element you specify does itself not appear in the response because of a
condition attached to it, this response element will not appear either.

 Page 42

Developing U.P.M.A.C.S. Device Drivers Data Object Sources

See Appendix A: Regular Expressions in the Developer’s Manual for details on regular expres-
sions.

Regular Expression Responses Elements

Regular expression response elements check a section of the response data using a regular ex-
pression. See Appendix A: Regular Expressions in the Developer’s Manual for details on regular
expressions.

The New Regular Expression Element Dialog

 Pattern:
Enter a regular expression that describes the data.

 Use a value for the number of repeats:
Check this box if you want to use a numerical value response element as a repeat count. The
regular expression must then appear as many times in the response as specified in the value.

Value:
Select the value element to use as a repeat count here.

Offset:
Enter a number to add to the value. Enter a positive value if the element is repeated more often
than the value specifies, enter a negative value if it is repeated less often.

 The “Condition” button:
Press this button to add, remove, or edit the response element condition attached to this element.
See Response Element Conditions on page 42 for a description of the Response Element Condi-
tion dialog.

Command Element Responses Elements

Command element response elements check that the same data that was sent for one of the
template’s command elements was returned in the response.

The New Command Element Dialog

 Page 43

Developing U.P.M.A.C.S. Device Drivers Data Object Sources

 Command element number:
Enter the number of the command element. The first command elements in the template has
command element number 1, the second one 2, and so on.

 The “Condition” button:
Press this button to add, remove, or edit the response element condition attached to this element.
See Response Element Conditions on page 42 for a description of the Response Element Condi-
tion dialog.

Bistate Parameter Responses Elements

Bistate parameter response elements extract a bistate value from the response using two regular
expressions, and check it against the value of a bistate parameter of the device driver or tem-
plate. See Appendix A: Regular Expressions in the Developer’s Manual for details on regular ex-
pressions.

The New Bistate Parameter Element Dialog

 Parameter:
Select the parameter whose value should appear in the response. Device driver parameters and
command template parameters are shown in the same list.

 Pattern for on:
Enter a regular expression that describes the data string meaning ON.

 Pattern for off:
Enter a regular expression that describes the data string meaning OFF.

 The “Condition” button:
Press this button to add, remove, or edit the response element condition attached to this element.
See Response Element Conditions on page 42 for a description of the Response Element Condi-
tion dialog.

Digital Parameter (Number) Responses Elements

Digital parameter (number) response elements extract a number from the response and check it
against a digital parameter of the device driver or template.

 Page 44

Developing U.P.M.A.C.S. Device Drivers Data Object Sources

The New Digital Parameter Element Dialog

 Parameter:
Select the parameter whose value should appear in the response. Device driver parameters and
command template parameters are shown in the same list.

 Encoding:
Select the encoding method that the equipment uses for the value. U.P.M.A.C.S. supports the
following encoding methods:

Byte:
A single byte (character) in the command string is used to represent the parameter as an 8-bit
value. Requires a fixed width of 1.

Multibyte:
Two or more bytes (characters) in the command string are used to represent the parameter as a
16, 24, or 32-bit value. You can choose between lo-hi and hi-lo byte ordering. If you select lo-hi
byte ordering, the least significant byte (the lower 8 bits) must appear in the response first; if you
select hi-lo byte ordering, the most significant byte (the upper 8 bits) must appear first. The mul-
tibyte encoding method requires a fixed width of 2, 3, or 4.

BCD:
The parameter is encoded using Binary Coded Decimal encoding. In BCD encoding, each nibble
(hex digit) in a byte represents one decimal digit. The number 20,841,057 would be encoded as
the byte (character) values hex 20 (32), hex 84 (132), hex 10 (16), and hex 57 (87). The BCD
encoding method requires a fixed width.

Decimal, Hexadecimal, Binary, Octal:
The parameter is written out as a decimal, hexadecimal, binary, or octal number using ASCII
characters. Hexadecimal encoding recognizes both capital and small letters (“A” to “F” and “a” to
“f”) as hex digits.

Do not confuse the byte/multibyte and binary encoding methods. The binary encoding expects
the parameter to be written out as a series of ASCII characters 1 (hex 31) and 0 (hex 30), not
using the individual bits of each byte.

 Skip leading characters:
Check this box to skip any characters that appear before the number in the response. This setting
only applies to the decimal, hexadecimal, binary, and octal encodings.

 Page 45

Developing U.P.M.A.C.S. Device Drivers Data Object Sources

Only spaces / All non-numerical / Only these:
Specify the characters that are allowed to appear before the number.

 Use fixed width:
Check this check box to require the number to be a fixed number of bytes (characters) long.
Specify the number of bytes in the edit box.

You must check this box for the byte, multibyte, and BCD encoding methods.

Allow trailing characters:
Check this box to allow characters that are not part of the number to appear after it in the re-
sponse. This only applies to characters within the fixed width. All characters are always allowed
to appear beyond the fixed width. Specify the characters that are allowed to appear after the
number using the radio buttons.

This setting only applies to the decimal, hexadecimal, binary, and octal encodings.

 The “Condition” button:
Press this button to add, remove, or edit the response element condition attached to this element.
See Response Element Conditions on page 42 for a description of the Response Element Condi-
tion dialog.

Digital Parameter (Strings) Responses Elements

Digital parameter (strings) response elements extract a number value from the response using a
set of regular expressions, and check it against the value of a digital parameter of the device
driver or template. See Appendix A: Regular Expressions in the Developer’s Manual for details on
regular expressions.

The New Digital Parameter Element Dialog

 Parameter:
Select the parameter whose value should appear in the response. Device driver parameters and
command template parameters are shown in the same list.

 Patterns for values:
Shows a list of all values that you specified regular expressions for, together with the expression
that describes the data string for that value. Use the buttons to edit, delete, duplicate, and add
values.

 The “Condition” button:
Press this button to add, remove, or edit the response element condition attached to this element.
See Response Element Conditions on page 42 for a description of the Response Element Condi-
tion dialog.

 Page 46

Developing U.P.M.A.C.S. Device Drivers Data Object Sources

Analog Parameter Responses Elements

Analog parameter response elements extract a number from the response and check it against
an analog parameter of the device driver or template.

You can provide a factor and an offset to be applied to the value after reading it. The value that
the parameter must match is calculated from the number in the response as follows:

parameter = number · factor + offset

To use the number unaltered, specify a factor of 1 and an offset of 0.

The New Analog Parameter Element Dialog

 Parameter:
Select the parameter whose value should appear in the response. Device driver parameters and
command template parameters are shown in the same list.

 Factor:
Enter the factor with which the number in the response is to be multiplied before verifying it. The
factor is applied before the offset.

 Offset:
Enter the offset that is to be added to the number in the response before verifying it. The offset is
applied after the factor.

 Encoding:
Select the encoding method that the equipment uses for the parameter. U.P.M.A.C.S. supports
the following encoding methods:

Byte:
A single byte (character) in the command string is used to represent the parameter as an 8-bit
value. If you select signed byte encoding, the most significant bit of the byte will be interpreted as
the sign in the standard way ($FF is -1, $FE is -2, etc.). The byte encoding method requires a
fixed width of 1.

 Page 47

Developing U.P.M.A.C.S. Device Drivers Data Object Sources

Multibyte:
Two or more bytes (characters) in the command string are used to represent the parameter as a
16, 24, or 32-bit value. You can choose between lo-hi and hi-lo byte ordering. If you select lo-hi
byte ordering, the least significant byte (the lower 8 bits) must appear in the response first; if you
select hi-lo byte ordering, the most significant byte (the upper 8 bits) must appear first. If you se-
lect signed multibyte encoding, the most significant bit of the most significant byte will be inter-
preted as the sign in the standard way (for 16-bit values $FFFF is -1,$FFFE is -2, etc.). The mul-
tibyte encoding method requires a fixed width of 2, 3, or 4.

BCD:
The parameter is encoded using Binary Coded Decimal encoding. In BCD encoding, each nibble
(hex digit) in a byte represents one decimal digit. The number 20,841,057 would be encoded as
the byte (character) values hex 20 (32), hex 84 (132), hex 10 (16), and hex 57 (87). The BCD
encoding method requires a fixed width.

Decimal, Hexadecimal, Binary, Octal:
The parameter is written out as a decimal, hexadecimal, binary, or octal number using ASCII
characters. Hexadecimal encoding recognizes both capital and small letters (“A” to “F” and “a” to
“f”) as hex digits.

Do not confuse the byte/multibyte and binary encoding methods. The binary encoding expects
the parameter to be written out as a series of ASCII characters 1 (hex 31) and 0 (hex 30), not
using the individual bits of each byte.

 Allow positive (+) sign:
Check this box to allow a plus sign to denote positive numbers. The plus sign does not actually
have to be the “+” character. You can specify any character you want.

This setting only applies to the decimal encoding.

 Allow negative (-) sign:
Check this box to allow a minus sign to denote negative numbers. If you leave this check box
blank, all numbers will be positive. The minus sign does not actually have to be the “-” character.
You can specify any character you want.

This setting only applies to the decimal encoding.

 Allow thousands separator:
Check this check box if you want digits to be separated into groups of three using a thousands
separators (usually a comma). If you check this box, you must also specify the actual character
used to group digits.

This setting only applies to the decimal encoding.

 Allow decimal marker:
Check this box to allow a decimal marker and decimals. If you leave this check box blank, all
numbers will be whole numbers. If you leave this box checked, you can specify the character
used as a decimal marker.

This setting only applies to the decimal encoding.

 Allow exponential notation:
Check this box to allow exponential (scientific) notation with the decimal encoding method.

Prefix for positive / negative exponent:
Enter the exponent markers for positive and negative exponents here. The exponent markers
must include the sign of the exponent. Usually, the positive exponent marker is “E+” or “e+”, and
the negative marker is “E-” or “e-”. If the plus sign is omitted for positive exponents, specify “E” or
“e” for the positive exponent prefix. The exponent prefixes can be any arbitrary data. See Appen-
dix B: Entering Binary Data in the Developer’s Manual for details on entering binary data.

 Page 48

Developing U.P.M.A.C.S. Device Drivers Data Object Sources

Show as text / Show as hex:
Select the way you want to enter the exponent prefixes. See Appendix B: Entering Binary Data in
the Developer’s Manual for details.

 Skip leading characters:
Check this box to skip any characters that appear before the number in the response. This setting
only applies to the decimal, hexadecimal, binary, and octal encodings.

Only spaces / All non-numerical / Only these:
Specify the characters that are allowed to appear before the number.

 Use fixed width:
Check this check box to require the number to be a fixed number of bytes (characters) long.
Specify the number of bytes in the edit box.

You must check this box for the byte, multibyte, and BCD encoding methods.

Allow trailing characters:
Check this box to allow characters that are not part of the number to appear after it in the re-
sponse. This only applies to characters within the fixed width. All characters are always allowed
to appear beyond the fixed width. Specify the characters that are allowed to appear after the
number using the radio buttons.

This setting only applies to the decimal, hexadecimal, binary, and octal encodings.

 Implied decimals:
Specify the number of implied decimals here. Implied decimals are a way of encoding fractions
without using a decimal point by multiplying it with a power of ten before encoding it. A number
that is encoded using 3 implied decimals, for example, will be multiplied by 1000 before it is en-
coded. This will move the three decimals from the right to the left of the decimal point, and the
decimal point will no longer be needed. 21.304, for example, will simply be encoded as 21304.

Please note that the implied decimals for the hexadecimal, octal, and binary encoding methods
are decimal fractions, not hexadecimal, octal or binary fractions. In hexadecimal encoding with
three implied decimals, 43.249 (which is ~2B.3FC in hex) will appear as A8F1 (which is 43249 in
decimal) rather than 2B3FC. In other words, the number is always multiplied by powers of 10,
even if the encoding method uses base 16, 2 , or 8.

 The “Condition” button:
Press this button to add, remove, or edit the response element condition attached to this element.
See Response Element Conditions on page 42 for a description of the Response Element Condi-
tion dialog.

String Parameter Responses Elements

String parameter response elements extract a data string from the response and check it against
a string parameter of the device driver or template.

String parameter response elements use regular expression patterns to recognize the parameter
value. The data is divided into three sections: A prefix, the value, and a suffix. The prefix and suf-
fix are discarded, and only the value is checked against the parameter..

See Appendix A: Regular Expressions in the Developer’s Manual for details on regular expres-
sions.

 Page 49

Developing U.P.M.A.C.S. Device Drivers Data Object Sources

The New String Parameter Element Dialog

 Parameter:
Select the parameter whose value should appear in the response. Device driver parameters and
command template parameters are shown in the same list.

 Prefix:
Enter a regular expression that describes any data that appears before the parameter in the re-
sponse. Any data that matches the prefix will be discarded.

 Pattern:
Enter a regular expression that describes the parameter here.

 Suffix:
Enter a regular expression that describes any data that appears after the parameter in the re-
sponse. Any data that matches the suffix will be discarded.

 The “Condition” button:
Press this button to add, remove, or edit the response element condition attached to this element.
See Response Element Conditions on page 42 for a description of the Response Element Condi-
tion dialog.

Numerical Value Responses Elements

Numerical value response elements extract a number from the response. The number can then
be used by other response elements as a data length, a repeat count, or in response element
conditions.

The New Numerical Value Element Dialog

 Page 50

Developing U.P.M.A.C.S. Device Drivers Data Object Sources

 Tag:
Enter the tag by which the value is identified. Each value response element (string or number) in
each response (valid and error) must have a unique tag.

 Encoding:
Select the encoding method that the equipment uses for the value. U.P.M.A.C.S. supports the
following encoding methods:

Byte:
A single byte (character) in the command string is used to represent the number as an 8-bit
value. Requires a fixed width of 1.

Multibyte:
Two or more bytes (characters) in the command string are used to represent the number as a 16,
24, or 32-bit value. You can choose between lo-hi and hi-lo byte ordering. If you select lo-hi byte
ordering, the least significant byte (the lower 8 bits) must appear in the response first; if you se-
lect hi-lo byte ordering, the most significant byte (the upper 8 bits) must appear first. The mul-
tibyte encoding method requires a fixed width of 2, 3, or 4.

BCD:
The value is encoded using Binary Coded Decimal encoding. In BCD encoding, each nibble (hex

represents one decimal digit. The number 20,841,057 would be encoded as the

decimal, Binary, Octal:

ecognizes both capital and small letters (“A” to “F” and “a” to “f”) as
hex digits.

ing characters:

 number.

 fixed width:

Allow trailing characters:
at are not part of the number to appear after it in the re-

 the radio buttons.

, or edit the response element condition attached to this element.
ditions on page 42 for a description of the Response Element Condi-

digit) in a byte
byte (character) values hex 20 (32), hex 84 (132), hex 10 (16), and hex 57 (87). The BCD encod-
ing method requires a fixed width.

Decimal, Hexa
The value is written out as a decimal, hexadecimal, binary, or octal number using ASCII charac-
ters. Hexadecimal encoding r

Do not confuse the byte/multibyte and binary encoding methods. The binary encoding expects
the value to be written out as a series of ASCII characters 1 (hex 31) and 0 (hex 30), not using
the individual bits of each byte.

 Skip lead
Check this box to skip any characters that appear before the number in the response. This setting
only applies to the decimal, hexadecimal, binary, and octal encodings.

Only spaces / All non-numerical / Only these:
Specify the characters that are allowed to appear before the

 Use
Check this check box to require the number to be a fixed number of bytes (characters) long.
Specify the number of bytes in the edit box.

You must check this box for the byte, multibyte, and BCD encoding methods.

Check this box to allow characters th
sponse. This only applies to characters within the fixed width. All characters are always allowed
to appear beyond the fixed width. Specify the characters that are allowed to appear after the
number using

This setting only applies to the decimal, hexadecimal, binary, and octal encodings.

 The “Condition” button:
Press this button to add, remove
See Response Element Con
tion dialog.

 Page 51

Developing U.P.M.A.C.S. Device Drivers Data Object Sources

String Value Responses Elements

String value response elements extract a string from the response, to be used by other response

tterns to recognize the value. The data is divided into
arded, and only the

elements in response element conditions.

String parameters use regular expression pa
three sections: A prefix, the value, and a suffix. The prefix and suffix are disc
value is stored.

See Appendix A: Regular Expressions in the Developer’s Manual for details on regular expres-
sions.

The New String Value Element Dialog

 Tag:
Enter the tag by which the value is identified. Each value response element (string or number) in
each response (valid and error) must have a unique tag.

 Prefix:
Enter a regular expression that describes any data that appears before the value in the response.
Any data that matches the prefix will be discarded.

 Pattern:
Enter a regular expression that describes the value here.

 Suffix:
Enter a regular expression that describes any data that appears after the value in the response.
Any data that matches the suffix will be discarded.

 The “Condition” button:
Press this button to add, remove, or edit the response element condition attached to this element.
See Response Element Conditions on page 42 for a description of the Response Element Condi-
tion dialog.

Checksum Responses Elements

 response elements extract a number from the response and check it against the Checksum
checksum of the data received for one or more response elements that precede it.

 Page 52

Developing U.P.M.A.C.S. Device Drivers Data Object Sources

The New Checksum Element Dialog

 Exclude ... from the start:
By default, checksum response elements calculate the checksum of all response elements that
precede it. If you want to exclude the data of some response elements at the beginning of the
response, enter the number of elements to exclude here. If you specify 2 in this field, the data for
the first two response elements in the list will not be included in the checksum calculation.

 Exclude ... after this:
By default, checksum response elements calculate the checksum of all response elements that
precede it. If you want to exclude the data of some response elements immediately before this
one, enter the number of elements to exclude here. If you specify 2 in this field, the data for the
last two response elements before this one will not be included in the checksum calculation.

 Type:
Select the type of checksum calculation. U.P.M.A.C.S. supports the following types of check-
sums:

Simple sum:
The checksum is the sum of all the character values in the received data.

You can specify the size of the individual characters. Most equipment uses 8 bits (1 byte) per
character. If you select 16, 24, or 32 bit characters, each group of 2, 3, or 4 bytes will be tr ted
as a single character value. For character sizes greater than 8 bits, you can also choose between

f you select lo-hi byte ordering, the first byte in each character is the

t being
ter size of 8 bits if the equipment uses 7-bit characters.

ea

lo-hi and hi-lo byte ordering. I
least significant byte (the lower 8 bits); if you select hi-lo byte ordering, the first byte in each char-
acter is the most significant byte (the upper 8 bits). Select the size of each character, as well as
the byte ordering (lo-hi or hi-lo), in the “Char size” field.

Please note that 7-bit characters are represented internally using 8 bits, with the highest bi
always 0. Select a charac

LRC:
Longitudinal redundancy check. The checksum is calculated by XORing all the character values
together.

 Page 53

Developing U.P.M.A.C.S. Device Drivers Data Object Sources

You can specify the size of the individual characters. Most equipment uses 8 bits (1 byte) per

gle character value. For character sizes greater than 8 bits, you can also choose between
lo-hi and hi-lo byte ordering. If you select lo-hi byte ordering, the first byte in each character is the

nt byte (the lower 8 bits); if you select hi-lo byte ordering, the first byte in each char-
 character, as well as

ides default val-
ues for these parameters, shown in the “Initial value” and “final xor mask” boxes. Select the

 as decimal” or “Show as hex” radio buttons to view the values as decimal or hex numbers.

 and edit the parameters. CRC-16 and CRC-CCITT use 16-bit polynomials, so the pa-

This type of checksum is used, for example, by Miteq equipment.

character. If you select 16, 24, or 32 bit characters, each group of 2, 3, or 4 bytes will be treated
as a sin

least significa
acter is the most significant byte (the upper 8 bits). Select the size of each
the byte ordering (lo-hi or hi-lo), in the “Char size” field.

Please note that 7-bit characters are represented internally using 8 bits, with the highest bit being
always 0. Select a character size of 8 bits if the equipment uses 7-bit characters.

CRC-16, CRC-CCITT, CRC-32:
Cyclic redundancy check. The checksum is calculated using a binary polynomial. The different
CRCs use different standardized polynomials.

The CRC algorithm has two arbitrary parameters: The initial value (sometimes called the seed) of
the calculation, and a value that the final result is XORed with. U.P.M.A.C.S. prov

“Show

If you need to use values other than those provided, you can check the “Customize algorithm”
check box
rameters must be 16-bit numbers. CRC-32 uses a 32-bit polynomial, so the parameters are 32-bit
numbers.

Modulo 128:
The checksum is the sum of all the data bytes, modulo 128. This is equivalent to ANDing the
checksum with hex 7F. Only the 7 least significant bits of the sum are used.

Modulo 256:
The checksum is the sum of all the data bytes, modulo 256. This is equivalent to ANDing the
checksum with hex FF. Only the least significant byte of the sum is used.

Printable checksum:
This is a special checksum designed to produce a checksum that is always a printable character.
It is calculated as follows:

 Subtract 32 from each character code,

 add the results together,

 take the sum modulo 95,

 add 32 to the result.

 Page 54

Developing U.P.M.A.C.S. Device Drivers Data Object Sources

Example:

To calculate the checksum for the string “Prometheus”, proceed as follows:

haracter code:Subtract 32 from each c

Char: P r o m e t h e u s

Code: 80 114 111 109 101 116 104 1

-32 -32 -32 -32 -32 -32 -32

01 117 115

-32 -32 -32

result: 48 82 79 77 69 84 72 69 85 83

Add the results together:

48 + 82 + 79 + 77 + 69 + 84 + 72 + 69 + 85 + 83 = 748

Take the sum modulo 95:

748 mod 95 = 83

And add 32 to the result:

83 + 32 = 115 (“ s “)

 Processor:
If you need a checksum calculation that is not listed above, you can write an SCL program to cal-
culate the checksum. Select the program that will do the calculation from the “Program” list, and
press the “Args...” button to specify program arguments. See Specifying Arguments for SCL Pro-
grams in the Developer’s Manual for a description of the Edit Program Arguments dialog.

See Programs for Sources, Checksums, and SABus Response Data in the SCL Language Ref-
erence for details on writing SCL programs that calculate checksums.

choose between lo-hi and hi-lo byte ordering. If you select lo-hi
ering, the least significant byte (the lower 8 bits) must appear in the response first; if you

hi-lo byte ordering, the most significant byte (the upper 8 bits) must appear first. The mul-

BCD:

The checksum is written out as a decimal, hexadecimal, binary, or octal number using ASCII

 Encoding:
Select the encoding method that the equipment uses for the checksum. U.P.M.A.C.S. supports
the following encoding methods:

Byte:
A single byte (character) in the command string is used to represent the checksum as an 8-bit
value. Requires a fixed width of 1.

Multibyte:
Two or more bytes (characters) in the command string are used to represent the checksum as a
16, 24, or 32-bit value. You can
byte ord
select
tibyte encoding method requires a fixed width of 2, 3, or 4.

The checksum is encoded using Binary Coded Decimal encoding. In BCD encoding, each nibble
(hex digit) in a byte represents one decimal digit. The number 20,841,057 would be encoded as
the byte (character) values hex 20 (32), hex 84 (132), hex 10 (16), and hex 57 (87). The BCD
encoding method requires a fixed width.

Decimal, Hexadecimal, Binary, Octal:

characters. Hexadecimal encoding recognizes both capital and small letters (“A” to “F” and “a” to
“f”) as hex digits.

Do not confuse the byte/multibyte and binary encoding methods. The binary encoding expects
the checksum to be written out as a series of ASCII characters 1 (hex 31) and 0 (hex 30), not us-
ing the individual bits of each byte.

 Skip leading characters:
Check this box to skip any characters that appear before the number in the response. This setting
only applies to the decimal, hexadecimal, binary, and octal encodings.

 Page 55

Developing U.P.M.A.C.S. Device Drivers Data Object Sources

Only spaces / All non-numerical / Only these:
Specify the characters that are allowed to appear before the number.

 Use fixed width:
Check this check box to require the number to be a fixed number of bytes (characters) long.

hods.

to appear after it in the re-
plies to characters within the fixed width. All characters are always allowed

ngs.

:

sponse Data Element Dialog

Specify the number of bytes in the edit box.

You must check this box for the byte, multibyte, and BCD encoding met

Allow trailing characters:
Check this box to allow characters that are not part of the number
sponse. This only ap
to appear beyond the fixed width. Specify the characters that are allowed to appear after the
number using the radio buttons.

This setting only applies to the decimal, hexadecimal, binary, and octal encodi

 The “Condition” button
Press this button to add, remove, or edit the response element condition attached to this element.
See Response Element Conditions on page 42 for a description of the Response Element Condi-
tion dialog.

Response Data Responses Elements

Response data response elements contain the data that is to be used by data objects. Response
data response elements are only used by the valid response, not by the error response.

The New Re

 Tag:
Enter the tag by which the element is identified. Each response data response element in a tem-
plate must have a unique tag.

 Get length from a value:
Check this box if you want the data length to be taken from a numerical value response element.

You can provide an offset, a factor, and an offset for the factor, to be applied to the value after
. The data length is calculated from the value as follows:

et) · (factor + factor offset)

reading it

data length = (value + offs

To use the number unaltered, specify a factor of 1 and an offset of 0.

 Page 56

Developing U.P.M.A.C.S. Device Drivers Data Object Sources

Value:
Select the value you want to use as the data length.

Cha
Sele gth will be the number of bytes in the
data. If you select 16, 24, or 32 bits, the length will be the number of 16, 24, or 32 bit words in the

note that 7-bit characters are represented internally using 8 bits, with the highest bit being
ment uses 7-bit characters.

element before this:

Enter the offset that is to be added to the value to get the data length. The offset is applied to the
e factor.

tor offset for fixed factors. Add the offset manually.

alue:

r expression that describes the response data. See Appendix A: Regular Expres-

Press this button to add, remove, or edit the response element condition attached to this element.
 Element Conditions on page 42 for a description of the Response Element Condi-

r size:
ct the size of the characters. If you select 8 bits, the len

data. Most equipment uses 8-bit characters.

Please
always 0. Select a character size of 8 bits if the equip

Includes ...
If the value includes the length of one or more other response elements immediately before this,
enter a number here. If you enter 3, then the data length gotten from the value (after applying the
offset and factor) will be considered to be the length of the data of this response element and that
of the three elements before it.

Offset:

value before multiplying it with th

Fixed factor:
If the factor with which the value is to be multiplied to get the data length is a fixed number, enter
it here. You cannot specify a fac

Factor v
If the factor with which the value is to be multiplied to get the data length is to be taken itself from
a value, select that value here.

Factor offset:
Enter the offset that is to be added to the factor value to get the final factor.

 Pattern:
Enter a regula
sions in the Developer’s Manual for details on regular expressions.

 The “Condition” button:

See Response
tion dialog.

Numerical Error Code Responses Elements

Numerical error code response elements retrieve an error code from the response. They are used
only by the error response, not by the valid response. See Error Handling on page 20 for more
details.

 Page 57

Developing U.P.M.A.C.S. Device Drivers Data Object Sources

The New Numerical Error Code Element Dialog

 Encoding:
Select the encoding method that the equipment uses for the error code. U.P.M.A.C.S. supports
the following encoding methods:

Byte:
A single byte (character) in the command string is used to represent the error code as an 8-bit
value. Requires a fixed width of 1.

Multibyte:
Two or more bytes (characters) in the command string are used to represent the error code as a
16, 24, or 32-bit value. You can choose between lo-hi and hi-lo byte ordering. If you select lo-hi
byte ordering, the least significant byte (the lower 8 bits) must appear in the response first; if you
select hi-lo byte ordering, the most significant byte (the upper 8 bits) must appear first. The mul-
tibyte encoding method requires a fixed width of 2, 3, or 4.

BCD:
The error code is encoded using Binary Coded Decimal encoding. In BCD encoding, each nibble
(hex digit) in a byte represents one decimal digit. The number 20,841,057 would be encoded as
the byte (character) values hex 20 (32), hex 84 (132), hex 10 (16), and hex 57 (87). The BCD
encoding method requires a fixed width.

Decimal, Hexadecimal, Binary, Octal:
The error code is written out as a decimal, hexadecimal, binary, or octal number using ASCII
characters. Hexadecimal encoding recognizes both capital and small letters (“A” to “F” and “a” to
“f”) as hex digits.

Do not confuse the byte/multibyte and binary encoding methods. The binary encoding expects
the error code to be written out as a series of ASCII characters 1 (hex 31) and 0 (hex 30), not
using the individual bits of each byte.

 Skip leading characters:
Check this box to skip any characters that appear before the number in the response. This setting
only applies to the decimal, hexadecimal, binary, and octal encodings.

Only spaces / All non-numerical / Only these:
Specify the characters that are allowed to appear before the number.

 Page 58

Developing U.P.M.A.C.S. Device Drivers Data Object Sources

 Use fixed width:
Check this check box to require the number to be a fixed number of bytes (characters) long.
Specify the number of bytes in the edit box.

You must check this box for the byte, multibyte, and BCD encoding methods.

Allow trailing characters:
Check this box to allow characters that are not part of the number to appear after it in the re-
sponse. This only applies to characters within the fixed width. All characters are always allowed
to appear beyond the fixed width. Specify the characters that are allowed to appear after the
number using the radio buttons.

This setting only applies to the decimal, hexadecimal, binary, and octal encodings.

 The “Condition” button:
Press this button to add, remove, or edit the response element condition attached to this element.
See Response Element Conditions on page 42 for a description of the Response Element Condi-
tion dialog.

String Error Code Responses Elements

String error code response elements retrieve an error code from the response. They are used
only by the error response, not by the valid response. See Error Handling on page 20 for more
details.

String error code response elements use regular expression patterns to recognize the error code.
The data is divided into three sections: A prefix, the error code, and a suffix. The prefix and suffix
are discarded, and only the error code is used.

See Appendix A: Regular Expressions in the Developer’s Manual for details on regular expres-
sions.

The New String Error Code Element Dialog

 Prefix:
Enter a regular expression that describes any data that appears before the error code in the re-
sponse. Any data that matches the prefix will be discarded.

 Pattern:
Enter a regular expression that describes the error code here.

 Suffix:
Enter a regular expression that describes any data that appears after the error code in the re-
sponse. Any data that matches the suffix will be discarded.

 The “Condition” button:
Press this button to add, remove, or edit the response element condition attached to this element.
See Response Element Conditions on page 42 for a description of the Response Element Condi-
tion dialog.

 Page 59

Developing U.P.M.A.C.S. Device Drivers Data Object Sources

DATA OBJECT SOURCES

Overview

Each data object has one or more sources that determines where it gets its value from. There are
many different types of sources for each type of data object.

There are three types of sources used by all types of objects:

 Processor sources

 Summary sources*

 Parameter sources**

Bistate objects can have six additional types of sources:

 On/Off string sources

 Bit mask sources

 Search string sources

 Digital value list sources*

 Value limits sources*

 Pattern match sources*

Digital objects can have four additional types of sources:

 Digital number sources

 Set of strings sources

 Thresholds sources

 Bit collection sources

Analog objects can have one additional type of source:

 Analog number sources

String objects can have two additional types of sources:

 String sources

 Filter sources

Data objects can have more than one source. See Multiple Sources on page 91 for details.

Most sources get the value from a response data response element of a command. See the foot-
notes for exceptions.

* These sources take their values from other data objects
** This source does not take it’s value from anywhere. The value of objects with parameter
sources must be set directly by SCL programs.

 Page 60

Developing U.P.M.A.C.S. Device Drivers Data Object Sources

Serial Data Sources

Most sources use response data from a command’s response. You can specify which part of the
data is to be used, and how.

Finding the Relevant Data within the Response

There are two ways in which to specify the part of the data that you wish to use.

 Using an offset from the beginning of the data:
You can specify a byte offset from the beginning of the response data element. The data used by
the source will begin a fixed number of bytes from the beginning of the response data. Use this
method if you know how many bytes from the beginning of the response data you are interested
in is located.

 Using a search key:
You can use a search key to find the relevant data. The section of the data used by the source
will begin a fixed number of bytes before or after the end of the first occurrence of the search key
in the response data. Use this method if the data objects in the response are variable length and
separated by separators, like spaces or commas. You can also use this method if the data is pre-
ceded by some character or characters: a piece of equipment might mark the position of a fre-
quency with the letter F, for example.

 Using Offset Parameters
You can use one or more of the digital parameters of the data objects to calculate additional off-
set values that will be added to the offset you specified. You can specify a formula to be used to
calculate the additional offset from the parameter value. The formula has the following form:

data offset = (parameter value + value offset) · value factor

Example:

You are creating an object that gets the alarm state of a modem, and all the information about all the modems
appears in a single response. The alarm state information for modem number 1 is located at byte offset 10, and
that the alarm states for the modems are 12 bytes apart. You should then specify a fixed offset of 10, and use the
modem number as an offset parameter with value offset -1 and value factor 12. The total offset for the different
modems will then be calculated as follows:

total offset = 10 + (modem number - 1) · 12

This gives the following offsets for the first four modems:

 Modem number 1: 10 + (1 - 1) · 12 = 10

 Modem number 2: 10 + (2 - 1) · 12 = 22

 Modem number 3: 10 + (3 - 1) · 12 = 34

 Modem number 4: 10 + (4 - 1) · 12 = 46

 The Edit Offset Parameters and Edit Offset Parameter Dialogs

 Page 61

Developing U.P.M.A.C.S. Device Drivers Data Object Sources

Use these parameters for additional offset:
Shows a list of all the formulas used to calculate the additional offsets. Use the buttons to edit,
delete, duplicate, or add formulas.

Parameter:
Select the parameter whose value should be used to calculate the offset.

Offset:
Enter the value offset for the parameter. The value offset is applied before the value factor.

Factor:
Enter the value factor for the parameter. The value offset is applied after the value offset.

The Serial Data Source Dialogs

The Source dialogs for sources that use serial data share the following fields:

The list below describes only those fields that all the dialogs have. For the remaining fields, see
the section on the appropriate source.

 Command:
Select the command whose response contains the data used for the object. You can specify val-
ues for all the command parameters below the “data elmt” field.

 Data elmt:
Select the response data element that contains the data used for the object. Specify values for all
the command parameters immediately below. In the sample dialog, the source uses a command
that has one digital parameter called “Modem number”.

If you want the command to inherit one of the object’s parameters, leave the parameter value
field blank. See Parameter Value Inheritance on page 10 for details. If you do not specify a value
for a parameter that is not inherited, a default value will be used. The default value for bistate pa-
rameters is OFF, the default value for digital and analog parameters is 0, and the default value for
string parameters is an empty string.

Show as decimal / Show as hex:
If the command has any parameters of type digital that don’t have value names, you can select
the way you want to enter the parameter values here. Select “Show as decimal” to enter the val-
ues in decimal, select “Show as hex” to enter the values in hexadecimal.

 Page 62

Developing U.P.M.A.C.S. Device Drivers Data Object Sources

Show as text / Show as hex:
If the command has any parameters of type string, you can select the way you want to enter the
parameter values here. See Appendix B: Entering Binary Data in the Developer’s Manual for de-
tails on entering binary data.

 Use search key:
Check the check box if you want to use a search key. If you check this box, the offset will be cal-
culated from the end of the first match for the search key. Enter a regular expression for the key
into the entry field.

See Appendix A: Regular Expressions in the Developer’s Manual for details on regular expres-
sions.

 Offset:
Enter the zero-based offset of the data within the buffer. If you did not specify a search key, the
offset is calculated from the beginning of the buffer. If you specified a search key, the offset is
calculated from the end of the first match for the search key.

If the data you are interested in is right at the beginning of the buffer, or right after the search key,
enter 0.

If there are n bytes between the beginning of the buffer or end of the search key and the data,
enter n.

If the data includes the last n bytes of the search key, enter -n.

 ... offset parameters:
Shows how many offset parameters you specified. Press the “Edit...” button to add, remove, or
change offset parameters.

See Using Offset Parameters on page 61 for a description of the Edit Offset Parameters dialog.

Processor Sources

Processor sources take information from a response data buffer in a serial device. You have to
provide an SCL program to decode the data. See Programs for Sources, Checksums, and SABus
Response Data in the SCL Language Reference for details on writing SCL programs that calcu-
late checksums.

Use processor sources for objects whose value comes from a response to a command, but none
of the other sources types can be used to interpret the data.

The Processor Source Dialog

The list below describes only those fields that are specific to the Processor Source dialog. For the
remaining fields, see The Serial Data Source Dialogs on page 62.

 Page 63

Developing U.P.M.A.C.S. Device Drivers Data Object Sources

 Use fixed width:
Check this check box to pass a fixed number of characters to the SCL program. If you leave this
box blank, all characters up to the end of the response data element will be passed to the SCL
program.

 Program:
Select the SCL program that is to do the evaluation of the data. The program arguments are
shown in parentheses after the name of the program, but you only select the program from the
lists, not the arguments. To change the arguments, use the “Arguments...” button. See Specifying
Arguments for SCL Programs in the Developer’s Manual for a description of the Edit Program
Arguments dialog.

Summary Sources

Summary sources take information from a number of other data objects. You can define the way
the values of the summarized objects are evaluated using an SCL program, or you can use the
default behaviour. If you want to use the default behaviour, all the summarized objects must be
bistate objects. Otherwise, they can be of any type. The default behaviour for the different types
of object is as following:

Bistate objects:
The object will be set to ON if any of the summarized objects are ON. The object will be set OFF
state if all of the summarized objects are OFF.

Digital objects:
The value of the object will be set to the number of summarized objects that are ON.

Analog objects:
The value of the object will be set to the fraction of summarized objects that are ON, i.e. the num-
ber of objects that are ON divided by the total number of objects.

String objects:
The value of the object will contain one line of text for each object that is ON, containing the name
of the object.

You can also provide an SCL program to do your own handling. See Programs for Sources,
Checksums, and SABus Response Data in the SCL Language Reference for details.

Use summary source for objects whose value is determined from the value of one or more other
objects.

The Summary Source Dialog

 Page 64

Developing U.P.M.A.C.S. Device Drivers Data Object Sources

 Program:
Select the SCL program that is to do the evaluation. Select <none> to use the default implemen-
tation. The program arguments are shown in parentheses after the name of the program, but you
only select the program from the lists, not the arguments. To change the arguments, use the “Ar-
guments...” button. See Specifying Arguments for SCL Programs in the Developer’s Manual for a
description of the Edit Program Arguments dialog.

 Objects:
Shows a list of all objects that this object summarizes. The object will be updated whenever one
of the objects it depends on changes value.

Use the buttons to add, modify, duplicate, and remove object references. The “Add” and “Add
Bistate...” button are both used to add objects to the list. If you use the “Add Bistate...” button, you
will be asked to select the object from a list that shows only bistate objects.

The “Add Object” dialog allows you to select the object you would like to add, as well as values
for all of its parameters. If you want the object to inherit one of the summary object’s parameters,
leave the parameter value field blank. See Parameter Value Inheritance on page 10 for details.

If you do not specify a value for a parameter that is not inherited, a default value will be used. The
default value for bistate parameters is OFF, the default value for digital and analog parameters is
0, and the default value for string parameters is an empty string.

Parameter Sources

Parameter sources do not get the object’s value from anywhere. The value of objects with pa-
rameter sources must be set via SCL programs.

Parameter sources support a default value. The object will be set to the default value when the
station is opened. If you do not specify a default value, the object will remain in its error state until
you set its value from within an SCL program.

Parameter sources can also provide the facility to remember the value of the object across
launches of U.P.M.A.C.S.. If you enable this feature, U.P.M.A.C.S. will remember the value the
object had when the station is closed, and set it to the same value when it is reopened. In this
case, the default value (if any) is used only the very first time the station is loaded.

Use parameter sources for user settings, or for any other data that you maintain yourself rather
than getting it from the equipment.

The Parameter Source Dialog

 Default value:
Check this box to specify a default value for the object. Specify or select the default value to the
right.

Show as text / Show as hex:
For string objects, you can select the way you want to enter the default value here. See Appendix
B: Entering Binary Data in the Developer’s Manual for details on entering binary data.

 Page 65

Developing U.P.M.A.C.S. Device Drivers Data Object Sources

 Remember the value across launches of U.P.M.A.C.S.:
Check this box to store the object’s value when the station is closed, and restore it when it is re-
opened.

On/Off String Sources

On/Off string sources extract the value of a bistate object from a response using two regular ex-
pressions. See Appendix A: Regular Expressions in the Developer’s Manual for details on regular
expressions.

Use on/off string sources if the equipment sends one data string if a setting or alarm is on, and
another if it is off.

The On/Off String On/Off String Source Dialog

The list below describes only those fields that are specific to the On/Off String Source dialog. For
the remaining fields, see The Serial Data Source Dialogs on page 62.

 Pattern for on:
Enter a regular expression for the ON value. The object’s value will be set to ON if this expression
is found at the start of the data.

 Pattern for off:
Enter a regular expression for the OFF value. The object’s value will be set to OFF if this expres-
sion is found at the start of the data.

Bit Mask Sources

Bit mask sources use one or more bits from a response to determine the value of a bistate object.

The state is calculated as follows:

 A number is extracted from a data buffer

 The number is XORed with an XOR mask

 The number is ANDed with an AND mask

The object is set to OFF if the result is 0, and to ON if the result is not zero, or vice versa (de-
pending on the polarity).

 Page 66

Developing U.P.M.A.C.S. Device Drivers Data Object Sources

The XOR mask inverts all the bits in the number that are 1 in the XOR mask. The AND mask sets
all bits that are 0 in the AND mask to 0. To look at a number of bits do the following:

 Set all the bits that are of interest to you in the AND mask

 Set all the bits that need to be inverted (1s become 0s and 0s become 1s) in the XOR
mask

Example:

number (in binary): 0 0 1 0 0 0 1 0 0 0 1 1 0 1 1 0 0 0 0 1 1 0 1 1 1 1 0 1 1 0 0 1

apply XOR mask: 0 1 0 1 0

result: 0 0 1 0 0 0 1 0 0 0 1 1 0 1 1 0 0 0 0 1 1 0 1 1 1 1 0 1 0 0 1 1

apply AND mask: 0 1 1 1 1

result: 0 1 1

The result is 00000011 00000000 00000000 00000000= 50331648.

Use bit mask sources for bistate objects whose state depends on the value of one or more bits in
a response.

Using Rotate Parameters

Bit rotation explained:

A bit rotation left moves all bits in a value left. The topmost bits are moved to the
bottom, into the spot left vacant when the bottom bits moved left.

A bit rotation right moves all bits in a value right. The bottom most bits are moved to
the top, into the spot left vacant when the top bits moved right.

A bit rotation left by 3 looks like this:

0 10

0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 0 1 1 1 1 1 0 0 0 1 0 10 0 1

0 1 1 0 1 0 1 1 0 10 0 1 0 0 1 1 10 0 1 0 0 1 0 11 1 0 0 0 1

You can use one or more of the digital parameters of the data objects to calculate a bit rotation
for the value. You can specify a formula to be used to calculate the bit rotation from the parame-
ter value. The formula has the following form:

bits rotated = (parameter value + offset) · factor

You can specify the direction of the rotation (left or right)

 Page 67

Developing U.P.M.A.C.S. Device Drivers Data Object Sources

Example:

You are creating an object that gets the alarm state of a modem, and all the information about all the modems
appears in a single byte in a response. The alarm state information for modem number 1 is bit 0, the state of
modem 2 at bit 1, etc. You should then use the modem number as a rotate parameter, rotating right with offset -
1 and factor 1. The number of bits to rotate the value to the right for the different modems will then be calculated
as follows:

number of bits to rotate = (modem number - 1) · 1

This gives the following offsets for the first four modems:

 Modem number 1: (1 - 1) · 1 = 0

 Modem number 2: (2 - 1) · 1 = 1

 Modem number 3: (3 - 1) · 1 = 2

 Modem number 4: (4 - 1) · 1 = 3

The response byte will thus be rotated for each modem until the alarm state bit is bit 0. You can then set bit 0 in
the AND mask to retrieve the alarm state.

For modem 4, the rotation value will have the following effect:

number (in binary): 0 0 1 0 0 0 1 0 0 0 1 1 0 1 1 0 0 0 0 1 1 0 1 1 1 1 0 1 1 0 0 1

rotate right by 3 bits: 1
0
0

0
1
0

0
0
1

1
0
0

0
1
0

0
0
1

0
0
0

1
0
0

0
1
0

0
0
1

0
0
0

1
0
0

1
1
0

0
1
1

1
0
1

1
1
0

0
1
1

0
0
1

0
0
0

0
0
0

1
0
0

1
1
0

0
1
1

1
0
1

1
1
0

1
1
1

1
1
1

0
1
1

1
0
1

1
1
0

0
1
1

0
0
1

apply AND mask: 0 1

result: 0 1

 The Edit Rotate Parameters and Edit Rotate Parameter Dialogs

Use these parameters for additional bit rotation:
Shows a list of all the formulas used to calculate the bit rotation values. Use the buttons to edit,
delete, duplicate, or add formulas.

Parameter:
Select the parameter whose value should be used to calculate rotation.

 Page 68

Developing U.P.M.A.C.S. Device Drivers Data Object Sources

Offset:
Enter the offset for the parameter value. The offset is applied before the factor.

Factor:
Enter the factor for the parameter value. The offset is applied after the offset.

Rotate left/Rotate right:
Select the direction of the rotation.

The Bit Mask Source Dialog

The list below describes only those fields that are specific to the Bit Mask Source dialog. For the
remaining fields, see The Serial Data Source Dialogs on page 62.

 Encoding:
Select the encoding method that the equipment uses for the number. U.P.M.A.C.S. supports the
following encoding methods:

Byte:
A single byte (character) in the command string is used to represent the number as an 8-bit
value. Requires a fixed width of 1.

Multibyte:
Two or more bytes (characters) in the command string are used to represent the number as a 16,
24, or 32-bit value. You can choose between lo-hi and hi-lo byte ordering. If you select lo-hi byte
ordering, the least significant byte (the lower 8 bits) must appear in the response first; if you se-
lect hi-lo byte ordering, the most significant byte (the upper 8 bits) must appear first. The mul-
tibyte encoding method requires a fixed width of 2, 3, or 4.

 Page 69

Developing U.P.M.A.C.S. Device Drivers Data Object Sources

BCD:
The number is encoded using Binary Coded Decimal encoding. In BCD encoding, each nibble
(hex digit) in a byte represents one decimal digit. The number 20,841,057 would be encoded as
the byte (character) values hex 20 (32), hex 84 (132), hex 10 (16), and hex 57 (87). The BCD
encoding method requires a fixed width.

Decimal, Hexadecimal, Binary, Octal:
The number is written out as a decimal, hexadecimal, binary, or octal number using ASCII char-
acters. Hexadecimal encoding recognizes both capital and small letters (“A” to “F” and “a” to “f”)
as hex digits.

Do not confuse the byte/multibyte and binary encoding methods. The binary encoding expects
the value to be written out as a series of ASCII characters 1 (hex 31) and 0 (hex 30), not using
the individual bits of each byte.

 Skip leading characters:
Check this box to skip any characters that appear before the number in the response. This setting
only applies to the decimal, hexadecimal, binary, and octal encodings.

Only spaces / All non-numerical / Only these:
Specify the characters that are allowed to appear before the number.

 Use fixed width:
Check this check box to require the number to be a fixed number of bytes (characters) long.
Specify the number of bytes in the edit box.

You must check this box for the byte, multibyte, and BCD encoding methods.

Allow trailing characters:
Check this box to allow characters that are not part of the number to appear after it in the re-
sponse. This only applies to characters within the fixed width. All characters are always allowed
to appear beyond the fixed width. Specify the characters that are allowed to appear after the
number using the radio buttons.

This setting only applies to the decimal, hexadecimal, binary, and octal encodings.

 XOR mask:
Select the bits you want to invert. The least significant bit and byte are shown on the right. Black
bits will be inverted; white bits will not be inverted. Click on a bit to toggle it, click on the byte
number above the bits to set or clear all the bits in that byte.

 AND mask:
Select the bits you want to use. The least significant bit and byte are shown on the right. Black
bits will be used; white bits will be masked out to 0s. Click on a bit to toggle it, click on the byte
number above the bits to set or clear all the bits in that byte.

 Polarity:
Select the polarity of the object. The object can either be set to ON if the result is greater than 0
(normal polarity), or if the result is equal to 0 (inverted polarity).

Search String Sources

Search string sources determine the value of a bistate object by searching for a regular expres-
sion in the response data or not. The value of the object depends on whether the expression was
found or not. See Appendix A: Regular Expressions in the Developer’s Manual for details on
regular expressions.

Use search string sources to implement alarms that are triggered or cleared when data sent by a
piece of equipment contains certain keywords. This is useful, for example, for equipment that re-
turns a string listing all currently active fault conditions.

 Page 70

Developing U.P.M.A.C.S. Device Drivers Data Object Sources

The Search String Source Dialog

The list below describes only those fields that are specific to the Search String Source dialog. For
the remaining fields, see The Serial Data Source Dialogs on page 62.

 Use fixed width:
Check this box to limit the search to only a section of the response data. Enter the width of the
section in the edit field.

 Search string:
Enter the regular expression to search for.

 Polarity:
Select the polarity of the object. The object can either be set to ON if the regular expression is
found (normal polarity), or if it is not found (inverted polarity).

Digital Value List Sources

Digital value list sources determine the value of a bistate object by checking the value of a digital
object against a list of values. The bistate object can be set to ON if the value of the digital object
appears in the list, and OFF if it doesn’t, or vice-versa.

Use digital value list sources if some of the values of a digital object are special in some way. For
example, you can use a digital value list source to trigger an alarm for certain values of a digital
object.

The Digital Value List Source Dialog

 Object:
Select the digital object whose value you would like to use. Specify values for all the object’s pa-
rameters immediately below. In the sample dialog, the object has one digital parameter called
“Cartridge number”.

 Page 71

Developing U.P.M.A.C.S. Device Drivers Data Object Sources

If you want the digital object to inherit one of the object’s parameters, leave the parameter value
field blank. See Parameter Value Inheritance on page 10 for details. If you do not specify a value
for a parameter that is not inherited, a default value will be used. The default value for bistate pa-
rameters is OFF, the default value for digital and analog parameters is 0, and the default value for
string parameters is an empty string.

Show as decimal / Show as hex:
If the object has any parameters of type digital that don’t have value names, you can select the
way you want to enter the parameter values here. Select “Show as decimal” to enter the values in
decimal, select “Show as hex” to enter the values in hexadecimal.

Show as text / Show as hex:
If the object has any parameters of type string, you can select the way you want to enter the pa-
rameter values here. See Appendix B: Entering Binary Data in the Developer’s Manual for details
on entering binary data.

 Values:
Enter the list of relevant values here. Separate the different values by commas.

 Polarity:
Select the polarity of the object. The object can either be set to ON if the value appears in the list
(normal polarity), or if it does not appear in the list (inverted polarity).

Value Limits Sources

Value limit sources determine the value of a bistate object based on whether the value of a digital
or analog object lies within certain limits or not.

Use value limit sources for trip limit alarms.

The Value Limits Source Dialog

 Object:
Select the digital or analog object whose value you would like to check. Specify values for all the
object’s parameters immediately below.

If you want the digital or analog object to inherit one of the object’s parameters, leave the pa-
rameter value field blank. See Parameter Value Inheritance on page 10 for details. If you do not
specify a value for a parameter that is not inherited, a default value will be used. The default
value for bistate parameters is OFF, the default value for digital and analog parameters is 0, and
the default value for string parameters is an empty string.

 Page 72

Developing U.P.M.A.C.S. Device Drivers Data Object Sources

Show as decimal / Show as hex:
If the object has any parameters of type digital that don’t have value names, you can select the
way you want to enter the parameter values here. Select “Show as decimal” to enter the values in
decimal, select “Show as hex” to enter the values in hexadecimal.

Show as text / Show as hex:
If the object has any parameters of type string, you can select the way you want to enter the pa-
rameter values here. See Appendix B: Entering Binary Data in the Developer’s Manual for details
on entering binary data.

 Limit type:
Specify the conditions under which the object should be set to on. You can select one of the fol-
lowing options:

On if within or on the limits
The object will be set to the ON state if upper limit ≥ value and value ≥ lower limit .

On if strictly within the limits
The object will be set to the ON state if upper limit > value and value > lower limit .

On if outside or on the limits
The object will be set to the ON state if value ≥ upper limit or lower limit ≥ value .

On if strictly outside the limits
The object will be set to the ON state if value > upper limit or lower limit > value .

 No limit / Fixed limit / Get limit from an object:
Select the type of limit to use for the upper or lower limit. There are three types of limits:

No limit:
The value is not limited in this direction.

Fixed limit:
The limit is a fixed number. Enter the limit in the edit field.

Get limit from an object:
Use the value of another object as the limit. The limit object must be of the same type (digital or
analog) as the main object. You can disable the limit by masking the limit object. If the limit object
is masked, the limit is treated as if you selected the “No limit” option.

Select the object whose value you would like to use as the limit. Specify values for all the object’s
parameters immediately below.

If you want the limit object to inherit one of the object’s parameters, leave the parameter value
field blank. If you do not specify a value for a parameter that is not inherited, a default value will
be used. The default value for bistate parameters is OFF, the default value for digital and analog
parameters is 0, and the default value for string parameters is an empty string.

Show as decimal / Show as hex:
If the object has any parameters of type digital that don’t have value names, you can select the
way you want to enter the parameter values here. Select “Show as decimal” to enter the values in
decimal, select “Show as hex” to enter the values in hexadecimal.

Show as text / Show as hex:
If the object has any parameters of type string, you can select the way you want to enter the pa-
rameter values here. See Appendix B: Entering Binary Data in the Developer’s Manual for details
on entering binary data.

 Page 73

Developing U.P.M.A.C.S. Device Drivers Data Object Sources

Pattern Match Sources

Pattern match sources determine the value of a bistate object by seeing if the value of a string
object matches a regular expression. See Appendix A: Regular Expressions in the Developer’s
Manual for details on regular expressions.

Use pattern match sources if some of the values of a string object are special in some way. For
example, you can use a pattern match source to trigger an alarm for certain values of a string
object.

The Pattern Match Source Dialog

 Object:
Select the digital object whose value you would like to use. Specify values for all the object’s pa-
rameters immediately below.

If you want the digital object to inherit one of the object’s parameters, leave the parameter value
field blank. See Parameter Value Inheritance on page 10 for details. If you do not specify a value
for a parameter that is not inherited, a default value will be used. The default value for bistate pa-
rameters is OFF, the default value for digital and analog parameters is 0, and the default value for
string parameters is an empty string.

Show as decimal / Show as hex:
If the object has any parameters of type digital that don’t have value names, you can select the
way you want to enter the parameter values here. Select “Show as decimal” to enter the values in
decimal, select “Show as hex” to enter the values in hexadecimal.

Show as text / Show as hex:
If the object has any parameters of type string, you can select the way you want to enter the pa-
rameter values here. See Appendix B: Entering Binary Data in the Developer’s Manual for details
on entering binary data.

 Pattern:
Enter the regular expression that the object’s value must match.

 Polarity:
Select the polarity of the object. The object can either be set to ON if the value matches the pat-
tern (normal polarity), or if it does not match the pattern (inverted polarity).

Digital Number Sources

Digital number sources get the value of a digital object directly from a response.

Use digital number sources for digital objects whose value appears as-is in a response.

 Page 74

Developing U.P.M.A.C.S. Device Drivers Data Object Sources

The Digital Number Source Dialog

The list below describes only those fields that are specific to the Digital Number Source dialog.
For the remaining fields, see The Serial Data Source Dialogs on page 62.

 Encoding:
Select the encoding method that the equipment uses for the value. U.P.M.A.C.S. supports the
following encoding methods:

Byte:
A single byte (character) in the command string is used to represent the value as an 8-bit value.
Requires a fixed width of 1.

Multibyte:
Two or more bytes (characters) in the command string are used to represent the value as a 16,
24, or 32-bit value. You can choose between lo-hi and hi-lo byte ordering. If you select lo-hi byte
ordering, the least significant byte (the lower 8 bits) must appear in the response first; if you se-
lect hi-lo byte ordering, the most significant byte (the upper 8 bits) must appear first. The mul-
tibyte encoding method requires a fixed width of 2, 3, or 4.

BCD:
The value is encoded using Binary Coded Decimal encoding. In BCD encoding, each nibble (hex
digit) in a byte represents one decimal digit. The number 20,841,057 would be encoded as the
byte (character) values hex 20 (32), hex 84 (132), hex 10 (16), and hex 57 (87). The BCD encod-
ing method requires a fixed width.

Decimal, Hexadecimal, Binary, Octal:
The value is written out as a decimal, hexadecimal, binary, or octal number using ASCII charac-
ters. Hexadecimal encoding recognizes both capital and small letters (“A” to “F” and “a” to “f”) as
hex digits.

Do not confuse the byte/multibyte and binary encoding methods. The binary encoding expects
the value to be written out as a series of ASCII characters 1 (hex 31) and 0 (hex 30), not using
the individual bits of each byte.

 Skip leading characters:
Check this box to skip any characters that appear before the number in the response. This setting
only applies to the decimal, hexadecimal, binary, and octal encodings.

Only spaces / All non-numerical / Only these:
Specify the characters that are allowed to appear before the number.

 Page 75

Developing U.P.M.A.C.S. Device Drivers Data Object Sources

 Use fixed width:
Check this check box to require the number to be a fixed number of bytes (characters) long.
Specify the number of bytes in the edit box.

You must check this box for the byte, multibyte, and BCD encoding methods.

Allow trailing characters:
Check this box to allow characters that are not part of the number to appear after it in the re-
sponse. This only applies to characters within the fixed width. All characters are always allowed
to appear beyond the fixed width. Specify the characters that are allowed to appear after the
number using the radio buttons.

This setting only applies to the decimal, hexadecimal, binary, and octal encodings.

Set of Strings Sources

Set of strings sources extract the value of a digital object from the response using a set of regular
expressions. See Appendix A: Regular Expressions in the Developer’s Manual for details on
regular expressions.

Use set of strings sources if the equipment sends different data strings representing different
states or settings.

The Set of Strings Source Dialog

The list below describes only those fields that are specific to the Set of Strings Source dialog. For
the remaining fields, see The Serial Data Source Dialogs on page 62.

 Patterns for values:
Shows a list of all values that you specified regular expressions for, together with the expression
that describes the data string for that value. Use the buttons to edit, delete, duplicate, and add
values.

 Page 76

Developing U.P.M.A.C.S. Device Drivers Data Object Sources

Thresholds Sources

Thresholds sources set the value of a digital object according to a number from a data buffer and
a set of thresholds. You can specify a value that the object should take if the number is a above a
certain threshold. You must also specify a bottom value for the object. The bottom value is the
value the object should have if the number lies below all the thresholds.

Example:

The sample dialog shows the following thresholds and values:

Bottom value: 0

Threshold at 85: 1

Threshold at 170: 2

The object will have value 0 for numbers less than 85, value 1 for numbers of at
least 85 but less than 170, and value 2 for numbers of at least 170.

Use thresholds sources for objects whose value reflects a set of states represented as different
analog levels on an input of a data acquisition unit.

The Thresholds Source Dialog

The list below describes only those fields that are specific to the Threshold Source dialog. For the
remaining fields, see The Serial Data Source Dialogs on page 62.

 Page 77

Developing U.P.M.A.C.S. Device Drivers Data Object Sources

 Encoding:
Select the encoding method that the equipment uses for the value. U.P.M.A.C.S. supports the
following encoding methods:

Byte:
A single byte (character) in the command string is used to represent the value as an 8-bit value. If
you select signed byte encoding, the most significant bit of the byte will be interpreted as the sign
in the standard way ($FF is -1, $FE is -2, etc.). The byte encoding method requires a fixed width
of 1.

Multibyte:
Two or more bytes (characters) in the command string are used to represent the value as a 16,
24, or 32-bit value. You can choose between lo-hi and hi-lo byte ordering. If you select lo-hi byte
ordering, the least significant byte (the lower 8 bits) must appear in the response first; if you se-
lect hi-lo byte ordering, the most significant byte (the upper 8 bits) must appear first. If you select
signed multibyte encoding, the most significant bit of the most significant byte will be interpreted
as the sign in the standard way (for 16-bit values $FFFF is -1,$FFFE is -2, etc.). The multibyte
encoding method requires a fixed width of 2, 3, or 4.

BCD:
The value is encoded using Binary Coded Decimal encoding. In BCD encoding, each nibble (hex
digit) in a byte represents one decimal digit. The number 20,841,057 would be encoded as the
byte (character) values hex 20 (32), hex 84 (132), hex 10 (16), and hex 57 (87). The BCD encod-
ing method requires a fixed width.

Decimal, Hexadecimal, Binary, Octal:
The value is written out as a decimal, hexadecimal, binary, or octal number using ASCII charac-
ters. Hexadecimal encoding recognizes both capital and small letters (“A” to “F” and “a” to “f”) as
hex digits.

Do not confuse the byte/multibyte and binary encoding methods. The binary encoding expects
the value to be written out as a series of ASCII characters 1 (hex 31) and 0 (hex 30), not using
the individual bits of each byte.

 Allow positive (+) sign:
Check this box to allow a plus sign to denote positive numbers. The plus sign does not actually
have to be the “+” character. You can specify any character you want.

This setting only applies to the decimal encoding.

 Allow negative (-) sign:
Check this box to allow a minus sign to denote negative numbers. If you leave this check box
blank, all numbers will be positive. The minus sign does not actually have to be the “-” character.
You can specify any character you want.

This setting only applies to the decimal encoding.

 Allow thousands separator:
Check this check box if you want digits to be separated into groups of three using a thousands
separators (usually a comma). If you check this box, you must also specify the actual character
used to group digits.

This setting only applies to the decimal encoding.

 Allow decimal marker:
Check this box to allow a decimal marker and decimals. If you leave this check box blank, all
numbers will be whole numbers. If you leave this box checked, you can specify the character
used as a decimal marker.

This setting only applies to the decimal encoding.

 Page 78

Developing U.P.M.A.C.S. Device Drivers Data Object Sources

 Allow exponential notation:
Check this box to allow exponential (scientific) notation with the decimal encoding method.

Prefix for positive / negative exponent:
Enter the exponent markers for positive and negative exponents here. The exponent markers
must include the sign of the exponent. Usually, the positive exponent marker is “E+” or “e+”, and
the negative marker is “E-” or “e-”. If the plus sign is omitted for positive exponents, specify “E” or
“e” for the positive exponent prefix. The exponent prefixes can be any arbitrary data. See Appen-
dix B: Entering Binary Data in the Developer’s Manual for details on entering binary data.

Show as text / Show as hex:
Select the way you want to enter the exponent prefixes. See Appendix B: Entering Binary Data in
the Developer’s Manual for details.

 Skip leading characters:
Check this box to skip any characters that appear before the number in the response. This setting
only applies to the decimal, hexadecimal, binary, and octal encodings.

Only spaces / All non-numerical / Only these:
Specify the characters that are allowed to appear before the number.

 Use fixed width:
Check this check box to require the number to be a fixed number of bytes (characters) long.
Specify the number of bytes in the edit box.

You must check this box for the byte, multibyte, and BCD encoding methods.

Allow trailing characters:
Check this box to allow characters that are not part of the number to appear after it in the re-
sponse. This only applies to characters within the fixed width. All characters are always allowed
to appear beyond the fixed width. Specify the characters that are allowed to appear after the
number using the radio buttons.

This setting only applies to the decimal, hexadecimal, binary, and octal encodings.

 Implied decimals:
Specify the number of implied decimals here. Implied decimals are a way of encoding fractions
without using a decimal point by multiplying it with a power of ten before encoding it. A number
that is encoded using 3 implied decimals, for example, will be multiplied by 1000 before it is en-
coded. This will move the three decimals from the right to the left of the decimal point, and the
decimal point will no longer be needed. 21.304, for example, will simply be encoded as 21304.

Please note that the implied decimals for the hexadecimal, octal, and binary encoding methods
are decimal fractions, not hexadecimal, octal or binary fractions. In hexadecimal encoding with
three implied decimals, 43.249 (which is ~2B.3FC in hex) will appear as A8F1 (which is 43249 in
decimal) rather than 2B3FC. In other words, the number is always multiplied by powers of 10,
even if the encoding method uses base 16, 2 , or 8.

 Bottom value:
Enter the value that the object should take if the number lies below any of the thresholds.

 Thresholds:
Lists all the thresholds and their corresponding values. Use the buttons to add, remove, or modify
thresholds and their values.

Bit Collection Sources

Bit collection sources use bits from one or more responses to determine the value of a digital ob-
ject. The bits are taken from one or more bit sections, and the values of those sections are ORed
together. You can then invert bits in the result using an XOR mask.

 Page 79

Developing U.P.M.A.C.S. Device Drivers Data Object Sources

The value of each section is determined as follows:

 A number is extracted from a data buffer

 The number is bit rotated to adjust the position of the relevant bits

 Any bits that need to be inverted are inverted using an XOR mask

 The relevant bits are masked out using an AND mask

All the sections are then ORed together, and the XOR mask of the bit collection source is applied.

Bit rotation explained:

A bit rotation left moves all bits in a value left. The topmost bits are moved to the
bottom, into the spot left vacant when the bottom bits moved left.

A bit rotation right moves all bits in a value right. The bottom most bits are moved to
the top, into the spot left vacant when the top bits moved right.

A bit rotation left by 3 looks like this:

0 10

0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 0 1 1 1 1 1 0 0 0 1 0 10 0 1

0 1 1 0 1 0 1 1 0 10 0 1 0 0 1 1 10 0 1 0 0 1 0 11 1 0 0 0 1

You can also specify a value map for the source. Sometimes, it is not possible to manipulate the
bits so that you will get the desired values for the desired states. Other times, different results
correspond to the same value. A value map will allow you to substitute other values for values
calculated by the source. Normally, the result of the calculation described above is used directly
as the value of the object. If the result is 2, the value of the object will also be 2. If, however, you
would prefer the value of the object to be 4 if the result is 2, then you could specify a value map
that maps a source value of 2 to an object value of 4. You can specify object values to be substi-
tuted for any number of source values.

Use bit collection sources for digital objects whose value depends on a number of bits from a
number of responses.

Examples

There are two basic ways of using bit collection sources.

 Using a number of adjacent bits from a single byte:
Sometimes, the state of a piece of equipment is represented by a number of bits in a status byte.
Bits 3 and 4 in a byte might represent a local / computer / remote front panel mode, for example.
The two bits might be 00, 01, and 10, depending on the mode. To turn this into a number be-
tween 0 and 2, construct one bit section as follows:

number (in binary): 1 1 0 0 1 0 0 1

rotate right by 3 bits: 1
0
0

1
1
0

1
1
1

0
1
1

0
0
1

1
0
0

0
1
0

0
0
1

apply XOR mask: 0 0 0 0 0 0 0 0

result: 0 0 1 1 1 0 0 1

apply AND mask: 0 0 0 0 0 0 1 1

result: 0 0 0 0 0 0 0 1

 Page 80

Developing U.P.M.A.C.S. Device Drivers Data Object Sources

The result of this section is then treated with the global XOR:

result of the section: 0 0 0 0 0 0 0 1

apply global XOR: 0 0 0 0 0 0 0 0

result: 0 0 0 0 0 0 0 1

The value of the object will thus depend on the value of the two bits alone.

 Using bits from different data buffers, or using non-adjacent bits:
Sometimes, the bits that represent the value you desire are not right next to each other in the
same buffer. You might want to turn a standby / transmit state and a warming / ready state of an
HPA into a single object, but the states are represented by different bits in different responses.
Let’s assume the high bit is bit 0 in one response, and the low bit is bit 2 in another response.
You will need two bit sections, as follows:

The first section turns bit 0 of one response into bit 1 of the result:

number (in binary): 0 1 1 0 1 0 1 1

rotate left by 1 bit: 1 1 0 1 0 1 1 0

apply XOR mask: 0 0 0 0 0 0 0 0

result: 1 1 0 1 0 1 1 0

apply AND mask: 0 0 0 0 0 0 1 0

result: 0 0 0 0 0 0 1 0

The second section turns bit 2 of the other response into bit 0 of the result:

number (in binary): 1 1 0 1 1 0 0 1

rotate right by 2 bits: 1
0

1
1

1
1

0
1

1
0

1
1

0
1

0
0

apply XOR mask: 0 0 0 0 0 0 0 0

result: 0 1 1 1 0 1 1 0

apply AND mask: 0 0 0 0 0 0 0 1

result: 0 0 0 0 0 0 0 0

The result of the sections are ORed together and then treated with the global XOR:

result section 1: 0 0 0 0 0 0 1 0

result section 2: 0 0 0 0 0 0 0 0

ORed together: 0 0 0 0 0 0 1 0

apply global XOR: 0 0 0 0 0 0 0 0

result: 0 0 0 0 0 0 1 0

 Page 81

Developing U.P.M.A.C.S. Device Drivers Data Object Sources

The Bit Collection Source Dialog

 Sections:
Lists the commands, rotate values, and XOR and AND masks of all the sections. Use the buttons
to create, delete, or edit sections. Use the “Duplicate...” button to duplicate the selected section.

See Bit Sections below for a description of the New Bit Section dialog.

 XOR mask:
Select the bits you want to invert. The least significant bit and byte are shown on the right. Black
bits will be inverted; white bits will not be inverted. Click on a bit to toggle it, click on the byte
number above the bits to set or clear all the bits in that byte.

 The “Value Map” button:
Click this button to edit the value map. The value map allows you to substitute different values for
the values calculated by the source.

Bit Sections

Bit sections are used in bit collection sources. A bit collection source uses the results of one or
more bit sections, ORed together.

The result of a bit section is calculated as follows:

 A number is extracted from a data buffer

 The number is bit rotated to adjust the position of the relevant bits

 Any bits that need to be inverted are inverted using an XOR mask

 The relevant bits are masked out using an AND mask

The XOR mask inverts all the bits in the number that are 1 in the XOR mask. The AND mask sets
all bits that are 0 in the AND mask to 0. To look at a number of bits do the following:

 Bit rotate the number left or right to move the bits to the desired location within the result

 Set all the bits that are of interested to you in the AND mask

 Page 82

Developing U.P.M.A.C.S. Device Drivers Data Object Sources

 Set all the bits that need to be inverted (1s become 0s and 0s become 1s) in the XOR
mask

Example:

number (in binary): 1 1 0 1 1 1 1 0 1 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 1 0 1 1 0 0 0 0

rotate left by 5 bits: 1
0
1
1
1

0
1
1
1
1

1
1
1
1
0

1
1
1
0
1

1
1
0
1
1

1
0
1
1
0

0
1
1
0
0

1
1
0
0
1

1
0
0
1
0

0
0
1
0
0

0
1
0
0
1

1
0
0
1
0

0
0
1
0
0

0
1
0
0
0

1
0
0
0
1

0
0
0
1
0

0
0
1
0
0

0
1
0
0
0

1
0
0
0
1

0
0
0
1
1

0
0
1
1
0

0
1
1
0
1

1
1
0
1
1

1
0
1
1
0

0
1
1
0
0

1
1
0
0
0

1
0
0
0
0

0
0
0
0
1

0
0
0
1
1

0
0
1
1
0

0
1
1
0
1

1
1
0
1
1

apply XOR mask: 0 0 0 0 1 0 1 0

result: 1 1 0 1 0 0 1 1 0 0 1 0 0 0 1 0 0 0 1 1 0 1 1 0 0 0 0 1 1 0 1 1

apply AND mask: 0 0 0 0 1 1 1 1 0

result: 0 0 0 0 0 0 1 1 0

The result is 00000011 00000000 00000000 00000000= 50331648.

Using Rotate Parameters

You can use one or more of the digital parameters of the data objects to calculate an additional
bit rotation for the value. You can specify a formula to be used to calculate the bit rotation from
the parameter value. The formula has the following form:

bits rotated = (parameter value + offset) · factor

You can specify the direction of the rotation (left or right)

 Page 83

Developing U.P.M.A.C.S. Device Drivers Data Object Sources

Example:

You are creating an object that gets the transmit / standby / warming state of an HPA, and all the information
about all four HPAs appear in a single byte in a response. The transmit state information for HPA 1 is contained
in bits 0 and 1, the state for HPA 2 in bit 2 and 3, etc. You should then specify use the HPA number as a rotate
parameter, rotating right with offset -1 and factor 2. The number of bits to rotate the value to the right for the
different HPAs will then be calculated as follows:

number of bits to rotate = (HPA number - 1) · 2

This gives the following offsets for the HPAs:

 HPA 1: (1 - 1) · 2 = 0

 HPA 2: (2 - 1) · 2 = 2

 HPA 3: (3 - 1) · 2 = 4

 HPA 4: (4 - 1) · 2 = 6

The response byte will thus be rotated for each HPA until the state bits are bits 0 and 1. You can then set bits 0
and 1 in the AND mask to retrieve the state.

For HPA 3, the rotation value will have the following effect:

number (in binary): 0 1 0 0 0 1 0 0 0 1 1 0 1 1 0 0 0 0 1 1 0 1 1 1 1 0 1 0 0 0 1 0

rotate right by 4 bits: 0
1
0
0

0
0
1
0

1
0
0
1

0
1
0
0

0
0
1
0

0
0
0
1

1
0
0
0

0
1
0
0

0
0
1
0

0
0
0
1

1
0
0
0

1
1
0
0

0
1
1
0

1
0
1
1

1
1
0
1

0
1
1
0

0
0
1
1

0
0
0
1

0
0
0
0

1
0
0
0

1
1
0
0

0
1
1
0

1
0
1
1

1
1
0
1

1
1
1
0

1
1
1
1

0
1
1
1

1
0
1
1

0
1
0
1

0
0
1
0

0
0
0
1

1
0
0
0

apply AND mask: 0 1 0

result: 0 1 0

 The Edit Rotate Parameters and Edit Rotate Parameter Dialogs
Click here to see the Edit Rotate Parameters dialog and the Edit Rotate Parameter dialog.

Use these parameters for additional bit rotation:
Shows a list of all the formulas used to calculate the additional bit rotation values. use the buttons
to edit, delete, duplicate, or add formulas.

 Page 84

Developing U.P.M.A.C.S. Device Drivers Data Object Sources

Parameter:
Select the parameter whose value should be used to calculate rotation.

Offset:
Enter the offset for the parameter value. The offset is applied before the factor.

Factor:
Enter the factor for the parameter value. The offset is applied after the offset.

Rotate left/Rotate right:
Select the direction of the rotation.

The New Bit Section Dialog

The list below describes only those fields that are specific to the New Bit Section dialog. For the
remaining fields, see The Serial Data Source Dialogs on page 62.

 Rotate bits:

Specify the number of bits to rotate to the left or right. Press the arrows on the top right until
the bits align the way you would like them.

 XOR mask:
Select the bits you want to invert. The least significant bit and byte are shown on the right. Black
bits will be inverted; white bits will not be inverted. Click on a bit to toggle it, click on the byte
number above the bits to set or clear all the bits in that byte. The masks are applied after the bit
rotation.

 AND mask:
Select the bits you want to use. The least significant bit and byte are shown on the right. Black
bits will be used; white bits will be masked out to 0s. Click on a bit to toggle it, click on the byte

 Page 85

Developing U.P.M.A.C.S. Device Drivers Data Object Sources

number above the bits to set or clear all the bits in that byte. The masks are applied after the bit
rotation.

Analog Number Sources

Analog number sources get the value of an analog object directly from a response. You can pro-
vide a factor and an offset for the value. The value of the object is calculated from the number
extracted from the response as follows:

value = number · factor + offset

To use the number unaltered, specify a factor of 1 and an offset of 0.

Analog number sources also support greater than (“>“) and less than (“<“) symbols in the re-
sponse. Some equipment sends data like “<1.0E-20dB” if a value is too small or too large to be
measured. Analog number sources can recognize the greater or less than symbol. The correct
symbol will then be displayed by any indicators whose registers use that object.

Use analog number sources for analog objects whose value or values appears as-is in a re-
sponse.

The Analog Number Sources Dialog

The list below describes only those fields that are specific to the Analog Number Source dialog.
For the remaining fields, see The Serial Data Source Dialogs on page 62.

 Value factor:
Enter the factor with which the number from the response is to be multiplied before writing it to
the object. The value factor is applied before the value offset.

 Page 86

Developing U.P.M.A.C.S. Device Drivers Data Object Sources

 Value offset:
Enter the offset that is to be added to the number from the response before writing it to the object.
The value offset is applied after the value factor.

 Encoding:
Select the encoding method that the equipment uses for the value. U.P.M.A.C.S. supports the
following encoding methods:

Byte:
A single byte (character) in the command string is used to represent the value as an 8-bit value. If
you select signed byte encoding, the most significant bit of the byte will be interpreted as the sign
in the standard way ($FF is -1, $FE is -2, etc.). The byte encoding method requires a fixed width
of 1.

Multibyte:
Two or more bytes (characters) in the command string are used to represent the value as a 16,
24, or 32-bit value. You can choose between lo-hi and hi-lo byte ordering. If you select lo-hi byte
ordering, the least significant byte (the lower 8 bits) must appear in the response first; if you se-
lect hi-lo byte ordering, the most significant byte (the upper 8 bits) must appear first. If you select
signed multibyte encoding, the most significant bit of the most significant byte will be interpreted
as the sign in the standard way (for 16-bit values $FFFF is -1,$FFFE is -2, etc.). The multibyte
encoding method requires a fixed width of 2, 3, or 4.

BCD:
The value is encoded using Binary Coded Decimal encoding. In BCD encoding, each nibble (hex
digit) in a byte represents one decimal digit. The number 20,841,057 would be encoded as the
byte (character) values hex 20 (32), hex 84 (132), hex 10 (16), and hex 57 (87). The BCD encod-
ing method requires a fixed width.

Decimal, Hexadecimal, Binary, Octal:
The value is written out as a decimal, hexadecimal, binary, or octal number using ASCII charac-
ters. Hexadecimal encoding recognizes both capital and small letters (“A” to “F” and “a” to “f”) as
hex digits.

Do not confuse the byte/multibyte and binary encoding methods. The binary encoding expects
the value to be written out as a series of ASCII characters 1 (hex 31) and 0 (hex 30), not using
the individual bits of each byte.

 Allow positive (+) sign:
Check this box to allow a plus sign to denote positive numbers. The plus sign does not actually
have to be the “+” character. You can specify any character you want.

This setting only applies to the decimal encoding.

 Allow negative (-) sign:
Check this box to allow a minus sign to denote negative numbers. If you leave this check box
blank, all numbers will be positive. The minus sign does not actually have to be the “-” character.
You can specify any character you want.

This setting only applies to the decimal encoding.

 Allow thousands separator:
Check this check box if you want digits to be separated into groups of three using a thousands
separators (usually a comma). If you check this box, you must also specify the actual character
used to group digits.

This setting only applies to the decimal encoding.

 Page 87

Developing U.P.M.A.C.S. Device Drivers Data Object Sources

 Allow decimal marker:
Check this box to allow a decimal marker and decimals. If you leave this check box blank, all
numbers will be whole numbers. If you leave this box checked, you can specify the character
used as a decimal marker.

This setting only applies to the decimal encoding.

 Allow exponential notation:
Check this box to allow exponential (scientific) notation with the decimal encoding method.

Prefix for positive / negative exponent:
Enter the exponent markers for positive and negative exponents here. The exponent markers
must include the sign of the exponent. Usually, the positive exponent marker is “E+” or “e+”, and
the negative marker is “E-” or “e-”. If the plus sign is omitted for positive exponents, specify “E” or
“e” for the positive exponent prefix. The exponent prefixes can be any arbitrary data. See Appen-
dix B: Entering Binary Data in the Developer’s Manual for details on entering binary data.

Show as text / Show as hex:
Select the way you want to enter the exponent prefixes. See Appendix B: Entering Binary Data in
the Developer’s Manual for details.

 Skip leading characters:
Check this box to skip any characters that appear before the number in the response. This setting
only applies to the decimal, hexadecimal, binary, and octal encodings.

Only spaces / All non-numerical / Only these:
Specify the characters that are allowed to appear before the number.

 Use fixed width:
Check this check box to require the number to be a fixed number of bytes (characters) long.
Specify the number of bytes in the edit box.

You must check this box for the byte, multibyte, and BCD encoding methods.

Allow trailing characters:
Check this box to allow characters that are not part of the number to appear after it in the re-
sponse. This only applies to characters within the fixed width. All characters are always allowed
to appear beyond the fixed width. Specify the characters that are allowed to appear after the
number using the radio buttons.

This setting only applies to the decimal, hexadecimal, binary, and octal encodings.

 Separator between values:
Enter a regular expression that describes the separator between the values of an object with a
size of more than one value. Leave the field blank if the values appear one after the other, without
a separator between them. This field is only available if you specify a size of more than one
value.

 Allow greater than and less than symbols:
Check this box to allow greater than and less than symbols. The symbols must appear before any
sign in the response.

Symbol for greater than:
Enter the symbol used for “greater than.” The greater than symbol does not have to be the “>“
character, you can enter any character you want.

Symbol for greater than:
Enter the symbol used for “less than.” The less than symbol does not have to be the “<“ charac-
ter, you can enter any character you want.

 Page 88

Developing U.P.M.A.C.S. Device Drivers Data Object Sources

 Implied decimals:
Specify the number of implied decimals here. Implied decimals are a way of encoding fractions
without using a decimal point by multiplying it with a power of ten before encoding it. A number
that is encoded using 3 implied decimals, for example, will be multiplied by 1000 before it is en-
coded. This will move the three decimals from the right to the left of the decimal point, and the
decimal point will no longer be needed. 21.304, for example, will simply be encoded as 21304.

Please note that the implied decimals for the hexadecimal, octal, and binary encoding methods
are decimal fractions, not hexadecimal, octal or binary fractions. In hexadecimal encoding with
three implied decimals, 43.249 (which is ~2B.3FC in hex) will appear as A8F1 (which is 43249 in
decimal) rather than 2B3FC. In other words, the number is always multiplied by powers of 10,
even if the encoding method uses base 16, 2 , or 8.

String Sources

String sources get the value of a string object directly from a response.

String sources use regular expression patterns to recognize the value. The data is divided into
three sections: A prefix, the value, and a suffix. The prefix and suffix are discarded, and only the
value is stored.

See Appendix A: Regular Expressions in the Developer’s Manual for details on regular expres-
sions.

The String Sources Dialog

The list below describes only those fields that are specific to the String Source dialog. For the
remaining fields, see The Serial Data Source Dialogs on page 62.

 Prefix:
Enter a regular expression that describes any data that appears before the relevant data in the
response. Any data that matches the prefix will be discarded.

 Pattern:
Enter a regular expression that describes the value here.

 Suffix:
Enter a regular expression that describes any data that appears after the relevant data in the re-
sponse. Any data that matches the suffix will be discarded.

Filter Sources

Filter sources extract a string from the response and use it as the value of the string object, if and
only if it matches one of a number of regular expression patterns you specify. If the data does not
match any of the patterns, the object’s value remains unchanged.

 Page 89

Developing U.P.M.A.C.S. Device Drivers Data Object Sources

Filter sources use regular expression patterns to recognize the string. The data is divided into
three sections: A prefix, the string, and a suffix. The prefix and suffix are discarded, and only the
string is used.

See Appendix A: Regular Expressions in the Developer’s Manual for details on regular expres-
sions.

Note: Search string sources also attempt to match a set of regular expressions in a response.
Unlike search string sources, however, Filter source objects do not go into the error state if none
of the strings are found, but retain their last valid value.

Filter sources are used to cache data that matches a certain pattern. Some equipment, for exam-
ple, logs messages about events in a message queue and allows you to retrieve the messages in
order. In such a case, a filter source lets you remember the last message that referred to a cer-
tain piece of information, like for example a certain alarm. If the message in the buffer is overwrit-
ten with something that does not refer to that particular alarm, the filter source will ignore the new
message, and the object will retain the last relevant one. You can thus attach a number of filter
sources to the message buffer; each filtering out messages pertaining to a different alarm. The
last message about each alarm will then always be available, even if it has been overwritten in
the equipment’s message buffer. You can then display the message directly, trigger an alarm
based on the message using a pattern match source, or use a summary source to process the
information further.

The Filter Source Dialog

The list below describes only those fields that are specific to the Filter Source dialog. For the re-
maining fields, see The Serial Data Source Dialogs on page 62.

 Prefix:
Enter a regular expression that describes any data that appears before the relevant data in the
response. Any data that matches the prefix will be discarded.

 Pattern:
Enter a regular expression that describes the string here.

 Suffix:
Enter a regular expression that describes any data that appears after the relevant data in the re-
sponse. Any data that matches the suffix will be discarded.

 Page 90

Developing U.P.M.A.C.S. Device Drivers Data Object Sources

 Allowed strings:
Lists regular expressions describing patterns that the data must match. The value of the object
will only be changed if the data matches one of the allowed strings.

Use the buttons to edit, delete, duplicate, and add expressions.

Multiple Sources

An object can contain more than one source. Typically, you would use more than one source for
an object if the information the object represents appears in the response to more than one com-
mand. To use multiple sources with an object, select <Multiple sources> for the source type. The
current source will not be deleted, but used as the first of the multiple sources.

Note: You can use a parameter source together with another source type to provide a default
value for the object, to remember the object’s value across launches of U.P.M.A.C.S., or both. Do
not use more than one parameter source for the same object, however, as the resulting behav-
iour is undefined.

The Multiple Source Dialog

The multiple source dialog lists a list of the types of all the sources, and a brief note on where the
data comes from (typically the command whose response is used). Use the buttons to edit, de-
lete, duplicate, or add sources.

 Auto mask if any / all sources are disabled:
Sources automatically mask their object if the command or object(s) they depend on is disabled.
If you use multiple sources, you can select whether the object should be auto masked if any of
the source’s data is disabled, or only if all the sources’ data is disabled.

 Page 91

Developing U.P.M.A.C.S. Device Drivers Contact Information

CONTACT INFORMATION

U.P.M.A.C.S. Communications Inc.

714 36th Avenue, Suite 301
Lachine, Québec
Canada
H8T 3L8

Tel: 1-514-697-5500
Toll free: 1-877-697-5500 (Canada & US only)
E-Mail: support@upmacs.com

UPMACS is on the Web at http://www.upmacs.com

This manual and the U.P.M.A.C.S. software package are
©2012 by UPMACS Communications Inc.

 Page 92

mailto:support@upmacs.com
http://www.upmacs.com/

	Table of Contents
	Developing U.P.M.A.C.S. Device Drivers
	Introduction

	How Device Drivers Work
	Structure of an U.P.M.A.C.S. Device Driver
	Device Driver Parameters
	Bistate Parameters
	Digital Parameters
	Analog Parameters
	String Parameters
	Device Driver Objects
	Command Templates
	Commands
	Data Objects
	SCL Programs
	Error Handling
	Initialization Sequence

	Overview Of Command Templates
	Bistate Parameters
	Digital Parameters
	Analog Parameters
	String Parameters
	Command Elements
	Response Elements
	Response Element Conditions
	Default Error Codes

	Overview Of Commands
	Command Parameters
	Bistate Parameters
	Digital Parameters
	Analog Parameters
	String Parameters
	Command Data

	Overview Of Data Objects
	 Bistate Objects
	 Digital Objects
	 Analog Objects
	 String Objects
	Sources
	Object Parameters
	Bistate Parameters
	Digital Parameters
	Analog Parameters
	String Parameters
	Parameter Value Inheritance

	Overview Of SCL Programs

	Device Driver Objects
	Device Drivers
	The New Device Driver Dialog
	 Tag:
	 Name:
	 Parameters:
	 Number of retries (including first try):
	 Minimum delay between commands:
	 Commands / Data objects and programs:
	 Command templates:
	 Commands:
	 Data objects:
	 Programs:
	 Error Handling:
	 Init Sequence:

	Parameters
	The New Parameter Dialog
	 Tag:
	 Type:
	 Value names:
	 Used to distinguish between commands:

	Command Templates
	The New Command Template Dialog
	 Tag:
	 Parameters:
	 Command expects / doesn’t expect a response:
	 Default timeout:
	 Default buffer size:
	 Delay before next command:
	 Command elements:
	 Valid response / Error response:
	 Response elements:
	 Error Handling:

	Commands
	The New Command Dialog
	 Tag:
	 Parameters:
	 Template:
	Show as decimal / Show as hex:
	Show as text / Show as hex:
	 Custom timeout, Custom buffer size:
	 Custom retries:
	 Template command data:
	 Content elements:

	Data Objects
	The New Data Object Dialog
	 Tag:
	 Parameters:
	 Type:
	 Size:
	 For internal use only:
	 Source type:
	 Value names:

	SCL Programs
	The New Program Dialog
	 Tag:
	 Abort execution after ... instructions:
	 For internal use only:
	 Data decoders:
	 Data encoders:

	Error Handling
	The Error Handling Dialog
	 Error codes:
	 Main error code:
	 Delay between retries:
	 Maximum number of retries (including first try):
	 Don’t do anything for / Reinitialize after / Retry after these errors:
	None:
	Only these:
	All other:

	Initialization Sequence
	The Initialization Sequence Dialog
	 First-time initialization / Reinitialization after timeout / Common initialization:
	 Commands to send:
	The New Initialization Command Dialog
	 Command:
	Show as decimal / Show as hex:
	Show as text / Show as hex:

	Commands Elements
	Overview
	Fixed String Commands Elements
	The New Fixed String Element Dialog
	 String:
	 Show as text / Show as hex:

	Delay Commands Elements
	The New Delay Element Dialog
	 Delay:

	Bistate Parameter Commands Elements
	The New Bistate Parameter Element Dialog
	 Parameter:
	 String for on:
	 String for off:
	 Show as text / Show as hex:

	Digital Parameter (Number) Command Elements
	The New Digital Parameter Element Dialog
	 Parameter:
	 Encoding:
	Byte:
	Multibyte:
	BCD:
	Decimal, Hexadecimal, Binary, Octal:
	 Use fixed width:
	Pad with zeros / Pad with spaces / Custom padding character:
	Align left / Align right:
	 Use capital letters A-F / small letters a-f as hex digits:

	Digital Parameter (Strings) Command Elements
	The New Digital Parameter Element Dialog
	 Parameter:
	 Strings to send for values:
	 String for other values:
	 Show as text / Show as hex:

	Analog Parameter Commands Elements
	The New Analog Parameter Element Dialog
	 Parameter:
	 Factor:
	 Offset:
	 Encoding:
	Byte:
	Multibyte:
	BCD:
	Decimal, Hexadecimal, Binary, Octal:
	 Show positive (+) sign:
	 Show negative (-) sign:
	 Use thousands separator:
	 Number of decimals:
	Show decimal marker:
	 Use fixed width:
	Pad with zeros / Pad with spaces / Custom padding character:
	Alignment:

	 Use capital letters A-F / small letters a-f as hex digits:
	 Use exponential notation:
	Number of non-decimal digits in the mantissa:
	Number of digits in the exponent:
	Prefix for positive / negative exponent:
	Show as text / Show as hex:

	String Parameter Commands Elements
	The New String Parameter Element Dialog
	 Parameter:
	 Use fixed width:
	Pad with spaces / Custom padding character:
	Align left / Align right:
	 Replace non-printable chars:

	Bistate Parameter Bits Commands Elements
	The New Bistate Parameter Bits Element Dialog
	 Bit 0-7:
	 Encoding:
	Byte:
	Multibyte:
	BCD:
	Decimal, Hexadecimal, Binary, Octal:
	 Use fixed width:
	Pad with zeros / Pad with spaces / Custom padding character:
	Align left / Align right:
	 Use capital letters A-F / small letters a-f as hex digits:

	Data Length Commands Elements
	The New Data Length Element Dialog
	 Char size:
	 Exclude ... after this:
	 Exclude ... from the end:
	 Offset:
	 Encoding:
	Byte:
	Multibyte:
	BCD:
	Decimal, Hexadecimal, Binary, Octal:
	 Use fixed width:
	Pad with zeros / Pad with spaces / Custom padding character:
	Align left / Align right:
	 Use capital letters A-F / small letters a-f as hex digits:

	Checksum Command Elements
	The New Checksum Element Dialog
	 Exclude ... from the start:
	 Exclude ... after this:
	 Type:
	Simple sum:
	LRC:
	CRC-16, CRC-CCITT, CRC-32:
	Modulo 128:
	Modulo 256:
	Printable checksum:
	Processor:
	 Encoding:
	Byte:
	Multibyte:
	BCD:
	Decimal, Hexadecimal, Binary, Octal:
	 Use fixed width:
	Pad with zeros / Pad with spaces / Custom padding character:
	Align left / Align right:

	 Use capital letters A-F / small letters a-f as hex digits:

	Command Data Command Elements
	The New Command Data Element Dialog
	 Tag:

	Responses Elements
	Overview
	Response Element Conditions
	The Response Element Condition Dialog
	 The response contains the element only under the following condition:

	Regular Expression Responses Elements
	The New Regular Expression Element Dialog
	 Pattern:
	 Use a value for the number of repeats:
	Value:
	Offset:
	 The “Condition” button:

	Command Element Responses Elements
	The New Command Element Dialog
	 Command element number:
	 The “Condition” button:

	Bistate Parameter Responses Elements
	The New Bistate Parameter Element Dialog
	 Parameter:
	 Pattern for on:
	 Pattern for off:
	 The “Condition” button:

	Digital Parameter (Number) Responses Elements
	The New Digital Parameter Element Dialog
	 Parameter:
	 Encoding:
	Byte:
	Multibyte:
	BCD:
	Decimal, Hexadecimal, Binary, Octal:
	 Skip leading characters:
	Only spaces / All non-numerical / Only these:
	 Use fixed width:
	Allow trailing characters:

	 The “Condition” button:

	Digital Parameter (Strings) Responses Elements
	The New Digital Parameter Element Dialog
	 Parameter:
	 Patterns for values:
	 The “Condition” button:

	Analog Parameter Responses Elements
	The New Analog Parameter Element Dialog
	 Parameter:
	 Factor:
	 Offset:
	 Encoding:
	Byte:
	Multibyte:
	BCD:
	Decimal, Hexadecimal, Binary, Octal:
	 Allow positive (+) sign:
	 Allow negative (-) sign:
	 Allow thousands separator:
	 Allow decimal marker:
	 Allow exponential notation:
	Prefix for positive / negative exponent:
	Show as text / Show as hex:
	 Skip leading characters:
	Only spaces / All non-numerical / Only these:

	 Use fixed width:
	Allow trailing characters:

	 Implied decimals:
	 The “Condition” button:

	String Parameter Responses Elements
	The New String Parameter Element Dialog
	 Parameter:
	 Prefix:
	 Pattern:
	 Suffix:
	 The “Condition” button:

	Numerical Value Responses Elements
	The New Numerical Value Element Dialog
	 Tag:
	 Encoding:
	Byte:
	Multibyte:
	BCD:
	Decimal, Hexadecimal, Binary, Octal:
	 Skip leading characters:
	Only spaces / All non-numerical / Only these:
	 Use fixed width:
	Allow trailing characters:

	 The “Condition” button:

	String Value Responses Elements
	The New String Value Element Dialog
	 Tag:
	 Prefix:
	 Pattern:
	 Suffix:
	 The “Condition” button:

	Checksum Responses Elements
	The New Checksum Element Dialog
	 Exclude ... from the start:
	 Exclude ... after this:
	 Type:
	Simple sum:
	LRC:
	CRC-16, CRC-CCITT, CRC-32:
	Modulo 128:
	Modulo 256:
	Printable checksum:
	 Processor:
	 Encoding:
	Byte:
	Multibyte:
	BCD:
	Decimal, Hexadecimal, Binary, Octal:
	 Skip leading characters:
	Only spaces / All non-numerical / Only these:

	 Use fixed width:
	Allow trailing characters:

	 The “Condition” button:

	Response Data Responses Elements
	The New Response Data Element Dialog
	 Tag:
	 Get length from a value:
	Value:
	Char size:
	Includes ... element before this:
	Offset:
	Fixed factor:
	Factor value:
	Factor offset:
	 Pattern:
	 The “Condition” button:

	Numerical Error Code Responses Elements
	The New Numerical Error Code Element Dialog
	 Encoding:
	Byte:
	Multibyte:
	BCD:
	Decimal, Hexadecimal, Binary, Octal:
	 Skip leading characters:
	Only spaces / All non-numerical / Only these:
	 Use fixed width:
	Allow trailing characters:

	 The “Condition” button:

	String Error Code Responses Elements
	The New String Error Code Element Dialog
	 Prefix:
	 Pattern:
	 Suffix:
	 The “Condition” button:

	Data Object Sources
	Overview
	Serial Data Sources
	Finding the Relevant Data within the Response
	 Using an offset from the beginning of the data:
	 Using a search key:
	 Using Offset Parameters
	 The Edit Offset Parameters and Edit Offset Parameter Dialogs
	Use these parameters for additional offset:
	Parameter:
	Offset:
	Factor:
	The Serial Data Source Dialogs
	 Command:
	 Data elmt:
	Show as decimal / Show as hex:
	Show as text / Show as hex:

	 Use search key:
	 Offset:
	 ... offset parameters:

	Processor Sources
	The Processor Source Dialog
	 Use fixed width:
	 Program:

	Summary Sources
	Bistate objects:
	Digital objects:
	Analog objects:
	String objects:
	The Summary Source Dialog
	 Program:
	 Objects:

	Parameter Sources
	The Parameter Source Dialog
	 Default value:
	Show as text / Show as hex:
	 Remember the value across launches of U.P.M.A.C.S.:

	On/Off String Sources
	The On/Off String On/Off String Source Dialog
	 Pattern for on:
	 Pattern for off:

	Bit Mask Sources
	Using Rotate Parameters
	 The Edit Rotate Parameters and Edit Rotate Parameter Dialogs
	Use these parameters for additional bit rotation:
	Parameter:
	Offset:
	Factor:
	Rotate left/Rotate right:
	The Bit Mask Source Dialog
	 Encoding:
	Byte:
	Multibyte:
	BCD:
	Decimal, Hexadecimal, Binary, Octal:

	 Skip leading characters:
	Only spaces / All non-numerical / Only these:

	 Use fixed width:
	Allow trailing characters:

	 XOR mask:
	 AND mask:
	 Polarity:

	Search String Sources
	The Search String Source Dialog
	 Use fixed width:
	 Search string:
	 Polarity:

	Digital Value List Sources
	The Digital Value List Source Dialog
	 Object:
	Show as decimal / Show as hex:
	Show as text / Show as hex:
	 Values:
	 Polarity:

	Value Limits Sources
	The Value Limits Source Dialog
	 Object:
	Show as decimal / Show as hex:
	Show as text / Show as hex:
	 Limit type:
	On if within or on the limits
	On if strictly within the limits
	On if outside or on the limits
	On if strictly outside the limits
	 No limit / Fixed limit / Get limit from an object:
	No limit:
	Fixed limit:
	Get limit from an object:
	Show as decimal / Show as hex:
	Show as text / Show as hex:

	Pattern Match Sources
	The Pattern Match Source Dialog
	 Object:
	Show as decimal / Show as hex:
	Show as text / Show as hex:
	 Pattern:
	 Polarity:

	Digital Number Sources
	The Digital Number Source Dialog
	 Encoding:
	Byte:
	Multibyte:
	BCD:
	Decimal, Hexadecimal, Binary, Octal:
	 Skip leading characters:
	Only spaces / All non-numerical / Only these:
	 Use fixed width:
	Allow trailing characters:

	Set of Strings Sources
	The Set of Strings Source Dialog
	 Patterns for values:

	Thresholds Sources
	The Thresholds Source Dialog
	 Encoding:
	Byte:
	Multibyte:
	BCD:
	Decimal, Hexadecimal, Binary, Octal:
	 Allow positive (+) sign:
	 Allow negative (-) sign:
	 Allow thousands separator:
	 Allow decimal marker:
	 Allow exponential notation:
	Prefix for positive / negative exponent:
	Show as text / Show as hex:
	 Skip leading characters:
	Only spaces / All non-numerical / Only these:

	 Use fixed width:
	Allow trailing characters:

	 Implied decimals:
	 Bottom value:
	 Thresholds:

	Bit Collection Sources
	Examples
	 Using a number of adjacent bits from a single byte:
	 Using bits from different data buffers, or using non-adjacent bits:
	The Bit Collection Source Dialog
	 Sections:
	 XOR mask:
	 The “Value Map” button:

	Bit Sections
	Using Rotate Parameters
	 The Edit Rotate Parameters and Edit Rotate Parameter Dialogs
	Use these parameters for additional bit rotation:
	Parameter:
	Offset:
	Factor:
	Rotate left/Rotate right:
	The New Bit Section Dialog
	 Rotate bits:
	 XOR mask:
	 AND mask:

	Analog Number Sources
	The Analog Number Sources Dialog
	 Value factor:
	 Value offset:
	 Encoding:
	Byte:
	Multibyte:
	BCD:
	Decimal, Hexadecimal, Binary, Octal:
	 Allow positive (+) sign:
	 Allow negative (-) sign:
	 Allow thousands separator:
	 Allow decimal marker:
	 Allow exponential notation:
	Prefix for positive / negative exponent:
	Show as text / Show as hex:
	 Skip leading characters:
	Only spaces / All non-numerical / Only these:

	 Use fixed width:
	Allow trailing characters:

	 Separator between values:
	 Allow greater than and less than symbols:
	Symbol for greater than:
	Symbol for greater than:

	 Implied decimals:

	String Sources
	The String Sources Dialog
	 Prefix:
	 Pattern:
	 Suffix:

	Filter Sources
	The Filter Source Dialog
	 Prefix:
	 Pattern:
	 Suffix:
	 Allowed strings:

	Multiple Sources
	The Multiple Source Dialog
	 Auto mask if any / all sources are disabled:

	Contact Information
	U.P.M.A.C.S. Communications Inc.

