version 6.2
Development System

SCL LANGUAGE REFERENCE

UPMACS Communications Inc.

Current for Development System v6.2.0

U.P.M.A.C.S. SCL Language Reference Table of Contents

Table of Contents

TABLE OF (CONTENTS. ¢.1tttttttessessnnssnsssnsssnnsnnnsnnnes

THE SCL PROGRAMMING LANGUAGE 12
1N T] 510 03 10] PR 12
LANGUAGE COMPONENTS 13
REMARKS ..t 13
LITERAL WALUES. ..t e e et e ettt oottt ettt ettt ettt et et e e et e e et e e e e e e e ae e s 13
N[l oT=Y £ RO RRST 13
1 10 SR 13
G ON ST ANT S, Lttt eeeeteettt e e e eee ettt e aeeeeeee et tta e eaaeeeessaaan s aaesesssanannsaaeessssannnaaaeesssssannsaasesessnnnnnsaaesaaseensnen 14
RESERVED WARIABLEScootttuuieeeteittttiieeeeeeee ettt aaeeeeeeee sttt aeaeeeeeasaanssaaaseesssananaaasseesstannsaaaaeseesnnnnnsaeaseenes 14
USER VARIABLESuieeeetetttutteeeeeeetsauaeeeeeseeataa e eeeesseestaan e eaeeeesssaanssaessesssannnnsaessessttannaeaeesesssrnnsseeesenees 14
ARRAYS .ottt et e ettt e et e e ettt et e eeeeeeeeeta—t——aeeeteetttaaaeeeeeteataaaeaeeettta———aaeettetttaaaaeaeerrereraraaaaaaes 15
Lo o= SRR PP UPPRTRRR 15
CrEALING ATTAYS ...viveeeveiteiti et ste e ste e e e ste et et e s te et esteete e saesteesbesbeateesbesbease e teateessesteeseestesteaseentenres 15
ACCESSING EIBMENTS......oiiitiiiiee bbbt eb e 15
N [T SRR 16
MATHEMATICAL EXPRESSIONS ... eeeeeeeettueseeeeeeettenaseeeeseeestsaaeeaeeeeesnnnnaeeeeseensnnnnaeeeeeessnnnaeeeeeerensnnnseees 16
OPBIALOT PIIOTTEY ...ttt ettt bbb e ettt b e 17
ASSIGNIMENTS .. ettt e et eeeettt e e eeeeeeeettt e eeeeeeerasaaaaeessesstaanaaaaessessaanssaeaasssssasannsaeessssstannaaaeeesesssransaesaeeees 18
(@70 1Y 1Y V- N] o 1RSSR 18
PROGRAMMING METHODS 19
PROGRAM ARGUMENTS ...ttt eeeeeettiieeeeeeeeeett e aeeeeeeee sttt aeeeeeeestaanaeesessstanaaaeaeseesttannaeaaesesssrnnnseeeseeens 19
CONDITIONAL STATEMENTS «..tieiiieiieee e e eeeee et e e et e e et e et e e e e e et e e et e e et e e et e e et e e et e e et e e et e e et e e et e e et e e et e et teeeteeaaaetaaetaaeeeeees 19
Single Command CONAITIONS........coiiiieie ettt neeseesreeneeseeaneas 19
FFE—THEN=END IF BIOCKS.....cciiiitiiiiiitiie ettt ettt ettt e e sttt e e st e e e s sabe e e e s st e e e e s st eeeessabanee e 19
LINE NUMBERS, JUMPS, AND SUBROUTINEScuuuuieeeeertetttunnseeeeeeeesnunneeeseesssnnnneseesressssnnaeeeeseessmnnnneeeeseees 21
LT N1 0] 0T £ 21
11101 o T ST PTRTPPTUPRPT 21
SUBDTOULINES ... ettt ettt e e e e et e e et e e s be e e sabe e e ebeeesbbeesabeeesareesnbeeebeeeas 22
Y O L] o] = Tod o To SSSPR 22
[0] =/ TSP 22
L I T I 0T TSR 22
REPEAT —UNT FL LOOPS +.ctteeiitie ittt ettt ettt sttt st et e sabeesnbe e s sbneesnbneennneean 23
O e NG N 0T] 1SR 24
IMIESSAGES TO THE USER .11uutttutuitttttntint e e e e e s e s e s e e a e e e e s 25
When to Use WhiCh COMMANG..........cuiiiiiiiiee ettt ettt etee e st e e 26
DIALOGS. ...ttt e ettt ettt e e e ettt e e e e e e e et ettt eeeee et ea—————aeeettettaa—aaeeeeteettraaeaaaereerrrataaaaes 28
[(oY DT F= 1 [0 AT o] o SR SS 28
(DT 100 1 (=104 OSSR 28

U.P.M.A.C.S. SCL Language Reference Table of Contents

DiIAIOG BULIONS. ...ttt bbbttt b bbbttt 29
The RESUIT VariabIe......eeeee ettt e e e s s e e e e s sab e e e s s sabae e s s sbbane e 29
The BUHON CAIIDACK.........ciiiiiiieiiitee ettt et eb e e e s s bt e e e s sb b e e e s s bbeeeeaas 30
= Perform validation of data the USEr ENtEredocvviiviiiiiii i 30
= Perform an action that does not close the dialogccocevveieiiiiiiie e, 30
TIME AND D ATE. ... cciiitiii ettt e ettt e e e e ettt e e e e e e e e ettt e e e eee e e e et b bt eeeeeeeessaaanaeesseessaanneeeeeeeestannnnnes 31
FILE INPUT AND OUTPUT AND NETWORK CONNECTIONS. .. uuuuieeeeeiietitieeeeeeeeeetttnaeeeeeeersstnnaaeeeeeerssnnasaeaseees 31
File INPUL QN OULPUL ...ttt sttt be st eeste e e e seeeneeseesaeaneas 31
N[0 SO0 o g T=Tox £ 0] L 32
DECODING AND ENCODING DATAuii i e ettt s e e e e e ettt e e e e e e ee et baa s e eeaaeeeassnnnseeaaaenes 32
Decoding or Encoding @ SiNGle ValUEcc.ooviiiiiiiecc e 32
Decoding a Sequence of Values from & STrNg........ccovieiiiiiiineees e 33
Encoding a Sequence of Values t0 @ SIHNG......cccveiieiie e i 33
SERIAL COMMUNICATIONcettttteeeeeeieetttaaeeeeeeeeeaat e eeeeeeettaaa e aeaeseees st aaaassessnnansaassessstnnnaaaaaseeestannnaeans 34
YT Ao [T 1o T @ o] 4] 1= o SRS 34
SYNCNIONIZING POt ACCESS......ecveeiiiiietieieite sttt bbbttt 35
PROGRAMS FOR SOURCES, CHECKSUMS, AND SABUS RESPONSE DATAcooiiiiiiiiie 35
Accessing the Data (Processor Sources and Checksums Only)cccoovvviiiiinincieiniee, 35
Specifying the Data Object/Register Value or CheCKSUM..........ccccviviiveieeiee e 36
T O 1Tt (YU [4R 36
= Serial Data ODjJects aNd REQISTEIS........cviiiiiiiiiie e 36
® SABUS ReSPONSE Data ODJECESc..oiuiiieieieiiie ettt sttt see e 37
Restrictions on FUNCtions and COMMEANGSeeviiiriiiiiiiiei et 37
PROGRAMS FOR SABUS COMMANDSciiiitittieeeeeeeeetttiiaeeeeeesasnnaeeessesstnnnneaesresstnnaeeeeeeessmnnaaeeerenes 37
Restrictions on FUNCtions and COMMANGSccueiiiuiiiiiee ittt bee s be e e eres 38
DEVICE DRIVER PROGRAMSciiiiiiiiie i e e ettt tee e e e e e et et ts s e e e e e eeeaata s e e e s e e sttanaaeeeeseesstannaaaaaeenssnnnnseaaaeenns 38
* Registers and 1egacy PAraMELETS........c.ciuiieiriiiieriest ettt eneas 38
B Serial POrtS aNd UBVICESocueiiiiiieiie ittt ettt et e e steereestesneeneeseeenens 39
LT O I o (0 0| = TR 39
INVOKING SCL PROGRAMS FROM WITHIN AN SCL PROGRAM......cuuuiiiiiiiiiiiiiiiie e e e eeeeettis s e e e e eeeannnn e e e e e e 39
Executing Programs On a Remote COMPULETccuiiieiiiiiie et sne s 39
RTS CONTROLS 1uueieeeeietti s s e e e e ettt e e e e e e e e et te e e e eeeeeeastaan s aeeaeeeaasnaan s aeesessssnnnaseeesessttannaeaeeseennnnnssaaaranres 40
Restrictions on FUNCtions and COMMANGSccueiiivieiiiee ittt eens 40
RESERVED VARIABLE REFERENCE 41
SERIAL COMMUNICATION RESERVED VARIABLEScevtttuiieeeieetttiiaeeeeeeeesttiaaeeeeesessttnnsseeesessssnnaaaeessessssnns 41

] THE DRVSUCCESS% RESERVED VARIABLEvrveeeseesseessesessesseessssesseesessesseessessessesssessesssesssseesseseessesseessssesseessssen 41

] THE DRVT IMEOUT% RESERVED VARIABLEcceiiiutttteteeeeiittteeeeeesesissseseeessaasssssseessaassssssssessaassssseessesssssssseessesssssssseeesannnes 41

u THE DRVERRORY RESERVED VARIABLE.....uuttttettitttttteeessetttteeeessesssssssseessassssssaeesaasssssesessssssssssesesassssssssesssessssssssessennnnns 42

] THE DRVDATASD RESERVED VARIABLEvveiiitteeeitteesetteeseseeessseesesssssssssssssssssesssssassssssssssessssessssssasssssesssessssessnsseeeans 42

u THE DRVERROR RESERVED VARIABLEuttitttettiittttetteessetiaeeeeessasssasssseeesassssssaeesaasssssssesaasssssseessesssssssesssssssssssssessennnnes 42

] THE DRVERRORS RESERVED VARIABLE0eeiiuttteiteeetitteesiteeesiseessesseesasssssssssaasssssasssesasssssassssesssessssssssssssessssesssssesenns 43
MISCELLANEOUS RESERVED VARIABLESuueetttetttuuseeeeseeettsnaaeeeeseeasnsnnaeeeseeensnnnnseeeseesssnnaaeeeeeressmnnnneees 43

u THE PRGNAMES RESERVED VARIABLEcettiitteesteesseessseasseesseessseasseessesssseassesssssssseessssssssssssessesssesssseessessssssnsessseesssesnsenns 43

] THE TIME RESERVED VARIABLEuuutuuuuuuuttuusssusssnssssssssssnssssssnsssnssnssnnnsnnnnnsnnnsnsnnnnnnnnnnssnen 44

] THE USRS RESERVED VARIABLEcctvteiitteeeeteeessteesesseesesesessssesasssssassssessssssssssssassseessseessssesessseessssesesssesesssseesnsensnns 44

] THE USRLVL RESERVED VARIABLEuuuuuuutuuusutsuussnssnsssssssssssssnssssssssssnssnnssnnnnnnnnnsnnnnnnnnnnnnnnnnn 44

] THE NETUPY RESERVED VARIABLEcciuttttiteeetietteeeeeesseestsseeeessaassssseeessaasssssssessaaassssssaessaassssseeesessasssssesessanssnsseeessannnns 44
SPECIAL PURPOSE RESERVED VARIABLESvvtuuieeeeeiiettttiieeeeeeesstunaseeeseesstanaaeeaessesstsnnaeesseesssnnaaeeeessssssanns 45

u THE BUFFERS RESERVED VARIABLEccctteieiuteeeitteeeetseeesteeesteeesesseesasseeessseesasseesassesessseesasseseansseessseeeassseessseesanseeeans 45

u THE TRIGGERS RESERVED VARIABLEecttiitteiteeiteestteeseesseessseaseessesssseassessssessseasseesssessseesseesssessseensessssesseessessssesnsenns 45

u THE TRIGGERDRVE RESERVED VARIABLEuvvieittteiitteeeiteeesiteeesesseeessseeessseesassesesssesessseesassesssnsssessseseassssesssssesnsseesnns 46

U.P.M.A.C.S. SCL Language Reference Table of Contents

LEGACY OBJIECT RESERVED WV ARIABLES.....uuuiittttieitttteeetttessstieessstaessesieesesstesstitesstiaeessssiessssnnnesrssnieens

THE TRIGGERMSG$ RESERVED VARIABLE

FUNCTION REFERENCE 47
MATHEMATICAL FUNGCTIONS. ..ttt eeeeeeettiee e e e e e e eettaee e e e e e e e eetbaaaeeeeeeseasbaa s aeesesesssaannseesseestaannaaeeeseeesrrananns 47
] THE ABS FUNCTIONteeittiiuteeteeetee ettt eeteeeteeeaseeeteeeseeesseeaseeaseseaseaseeasesaaseeaseeaseeeaseesseeassesaseensaeasseenseenseesseesteessseanteesseens 47
u THE SQRT FUNCTION ..utiieiittieeietieestiteestteeessteeesateeessseeeesmseeesssseessseeesnseeeaasseeasseeeanseeeaaneeeennseeesnseeeanseeeanseesnseeesnsneesnnne 47
] THE STIN FUNCTIONteeittiitteeteeetee ettt eeteeeteeetteeeteeeteeesseeaseeaseeeaseaseeaseeeaseenseeaseeenseenseeesseanseenseeasseenseeaseeaseestaesssesnseestenns 47
u THE COS FUNGCTION .1ttt tuttteeitteee sttt e ssteeesstseeessseeesssseeaasseeessseeeassseeaasseeeasseeeaasseeaasseeeansseeaasseeeanseeeenseeeannseeansenesnsaeesnsneennnns 47
u THE TAN FUNGCTION ... tttttte et e ettt et e e e e ettt e e e e ettt e eeeeeaesaaaa e e eeeeaessaaeeeeeeaasssseeaeeeeassssaaeeeeeenssssaseeeeeassssaeaesanssbaaeaaessnnssnns 48
u THE EXP FUNGCTION .1ttt ttttte ittt e sttt e ettt e ettt e e sstee e sttt e asseeessaeeeasssee e sseeeasseeeeaseeeasseeeanseeeanseeeensseeeenseeeennsaeenseneanseeesnsnnennnn 48
u THE LN FUNGCTION ..ttt sttt e e e ettt e e e e ettt e e e e ettt e e e e e essaa e e e e e e e aassaae e eeeeaansssseeaeeeeansssaeeaeeeenssssaseeeeeannsssaeessansnbsaeeeessnnssnns 48
u THE LOG2 FUNCTION ..uuttieittieesiteeeetetesstteeessteeesssseessseeessseaeassseessseeeassseeassseeasseeeansseeansseeensseesansseeanssasennsnesnsenesssnnessnns 48
u THE LOGLO FUNGCTION ..uttiiiieeiiittiitte e e eeitteteeeeseesttaeeeeeesassaaaeeeeeaaassasseaeeeaasssssasaeeeeasssssaeaeeaanssssasaeeseaassssaaaeeeanssseeeeessnssnns 48
] THE MOD FUNGCTION ... tte ittt ettt eteeetee ettt eeteeeteeeaseeeteeeteeesseeaseeaseeeaseaseeaseeeassenseeaseeeaseensaeassesnseensseaseeenseeseesseesteessseanseessenns 49
u THE RND FUNGCTION ...t e tutttetitteee sttt e stetessttee e ssteeeseteeessseeeesaseeesassee e sseeeasseeeeaseeeesseeeamseeeaaneeeeanseeeenseeeenseeenseeeanseeesnsneeennn 50
] THE RNDDWN FUNCTIONttiiteeitte ettt eeteeeteeetteeteeeteeesseeaseeasessaseaseeaseeasseenseeaseeasseenseeassesnseensaesseesnseeseesssesnsaesseenseessensns 50
u THE RNDUP FUNGCTION ...ttteitttieittieesteteastteeessteeesateeesssseeesmseeessseeesnsseeesssseeanseeeaasseeeansseeanseeeanseeeansseeannseeeanseesnsenesnsnnesnnne 50
STRING MANIPULATION FUNGCTIONSeiiiiitttiieeeeeeeeeettieseeeeseesssaaaaeeeseesstanaeeaeseesstannaeesesssssnnaaaaeeseesssannn 51
u THE LEN FUNGCTION ... tttiitt e ettt e e ettt e e e e et e e e e e e saaaa e e e e e e esaasaeaeeeeassssaaeaeeeeassssaaeeeeeaassssaeeesansnbaaeaeessnnnsnns 51
] THE LEF TS FUNCTION ...tiiiuiiitee it ettt et e st e ettt eteesteesaaeeaeesseesaseasseeaseesaseeaseeaseeaaseenseeaaseeaseenseeasseenseeseesnseensestsesnseesreenn 51
] THE REGHTS FUNCTION ...ttt ettt ettt s e e ettt e e et e e et e e e aae e e e aae e e e aaaeeeesseeeaasseesasseeeenseeesnsseessseeennseeestaeesasneeesaes 51
] THE MEDS FUNCTION ..oiitiiitieitieitee ettt et e st e et e ete e steeesaeeaaeesaeeeaseesseeaaeesaseeaseesaseeaseeaseesaseeaseenseeaseeenseeseesnseeteessseenseenreens 51
u THE POS FUNGCTIONtttittee et ittt e e e e s ettt ee e e e et aeeeeeeeaassaaaeeeee e e ssaseeeaeeaasssssaeaeeeeassssaseaeeeenssssaseeeeenassssaeaesanssbaaeeaessnnssnns 52
u THE REGEXPOS FUNGCTION. .11ttt ttttteittttessttteessteeestaeesesseeessseaesssseesasseesassssesssseessssssassssesnssssesssesssssssesnssssesssesessssessseessnns 52
u THE REGEXEND FUNGCTION ...t tuttttttteeseeitttteeeeseeitteeeeeessesasseeeeeaaassaaseseeeaasssssasaeeeaassssseeaeeaaassssssaeeeeassssssaeeeeannsssneessnsssnes 52
STRING CONVERSION FUNCTIONS. ... ieeiiiittiieeeeeeeeeeettieeseeeeeeestaaaaeeeessesttanaaeeaeseesstaassaeeseessssnnaeaeeseesrsannn 53
] THE CHRS FUNCTION L..itiiiiiiitee it ettt et e et e ette e te e eteeeaaeeeteeeteeeaseeseeaseeeaseeaseeeseeeaseenseeeasesnseensaeaseeenseenseessseeteestseanteesteesns 53
u 317N 1O I T 0T 1 ORI 53
] THE SASC T FUNCTION ...ccutiitee ittt ettt eeteeeteeetteeeteeeteeeaseeateeeaeesaseaseeaseeeaseeaseeeseeaaseensaeasseaaseenseeaseeenseessessseensaetseanteesteens 54
] THE STRE FUNCTION ..ueitiiiuieitiesite sttt eteesteessteesseessesssseeseessesasseasseessesasseasseessssanseessessssesnseensesssesensesssessssensesssesanseessensns 54
] THE ISTREB FUNCTION ...ttiiiittiie ittt e ettt e e ettt e e ettt e et e e s etae e e eaaeeeaaaseeeeaseeeaasaeeeasseeeasseeeaasseesasseeeansesesasseeenseeennsssanbeeesasneeesnes 54
] THE VAL FUNGCTION ... ttettteitteetee et e sttt eteesteesate e teesaeessseeaseesseeesseasseesseeaaseenseeasseanseenseeasseeaseensaeasseenseenseesneenseessseanseenreenn 55
u THE FVAL FUNGCTION L.uutttiieeeeiietttit e e e e s ettt tee e e e eestaaeeeeeesassaaaseeeeaaassasseeeeeaasssssaeaeeeaasssseseaeeaaassssaseeeeeaassssaaeeeenssbsaeeaessnnssnns 55
u THE HEXVAL FUNGCTION ...t ittieesitieeeteteeetieeesteeestteeasteeessseaeassseeassaeeasssaeassseeasseeeassseeanssae e sseeeanssaeenssaeennsaeentanesnsneeesnns 56
u THE BENVAL FUNCTION .1ttttteiiittttitteeeeeiiaeteeeeseesitaeeeeeesessaaaseeeesaassssseaeeeaasssssasaeeeaassssaseaeeaaassssasaeeseasssssaeaeeeaanseseeessassnns 56
u THE OCTVAL FUNGCTION ..ot ittiee sttt eeteteestieeessteeestteesssseeessseaeassseeassaeeassaaeassseeasseeeasseeeansseeensseeeanssaeannsaeennseeentanesnsnenennns 56
u THE BCDVAL FUNGCTION .1ttttteetittttttteeeeettteeeeeeseestsseeesessasassseaeesaassssaeaaeeaasssssesaeeeaasssssseeeeaaassssssaeesaasssssaaaeeeasaseeeeessanssnns 57
] THE LOH EVAL FUNCTIONttitteitte ettt eteeeteeetteeeteeeteeeaseesseeesessaseaseeaseeaaseenseeasseaaseensaeasseanseensaeassesnseeseeasseensaeasesnbeessenns 57
u THE SLOHTVAL FUNCTION. ...ttt ttttteiutete sttt e stieeesteeesssaeeessaeeessseeesasseeessseeesnseeeaasseeeanseeeanseeeanseeesnseeeannseeennseeesnnsessssnessnne 57
] THE HELOVAL FUNCTIONttiteeitee ettt et e eteeetteeeteeeteeeaseesaeeeseesaseaseeasesaaseeaseeassesaseensaeasseanseensaeaseesnseeseeassesnsaeasesnseessenns 58
u THE SHELOVAL FUNCTION. ...ttt tuttteiutetesstteeestteeesteeesasseeessaeeessseeesasseeessseeesnseeeaasseeeanseeeanseeeanseeesnseeesnnsesesnseeesnnsesssneessnne 58
] THE FMT S FUNCTION L.oiitiiiuiiiite e et ettt et e et e ettt e ete e eteeeaaeeebeeebeeeaseeseeeaeeeaseeaseeeseeeaseensaeesseanseensaeaseeenseeseessseataestseanbeesseens 58
] THE HEXFMTSB FUNCTION ...ttt iutteitee sttt esteesteesiteesteesseesseeeseesseessseasseeaseessseanseessseasseesseessseanseenseeaseeanseensensseeansennsesnseessennn 59
] THE HEXFMT 2B FUNGCTION.eieiutteeiteee ettt e e ettt e sttt e eetaeeeeaaeaesaaeesaaseeeaasseesasseeesseeeaasseesssee e nsesesnsseeasseeeansesesnseeasseeesnns 60
] THE BENFMTS FUNCTION ...ttt iteeitee ittt et e ete e sttt e e e steessaeebeeeaeesaseasseeaaeesaseeaseeasseeaseensaeasseanseenseeassesnseenseesnseenseenseanseesreens 60
] THE OCTIMTE FUNCTIONttiieittie e ittt e ettt e e ettt e ettt e ettt e e et e e et e e e eaaeeeeaaeeesabseeeaseeeaasseeeassee e nseeesnsseessseeennseseaneesasseeesnns 60
] THE BCDFMTS FUNCTION ...ttt iutteitee ettt et e steeetteeteesteessseeseesseessseasseeaseesaseeaseeaseeaaseenseeasseaaseensaeasseenseeseesnseenseenseanseesrennn 61
] THE LOH EFMT S FUNGCTION. ...vet ettt e ittt e ettt e e ettt e ettt e eetaeeeeaaeeesataeeseaseeesaseeesasaeeaaseeeaasseeassee e nseeeensseeassaeeanseeeasseensaeeesnns 61
] THE HELOFMTS FUNCTION. ...ecutteitteitteeteesteeetteeteesteessseesaeesseesaseasseesseesaseenseeasseanseensaeasseanseensaesssesnseenseesnseenseenseesseessennn 62
] THE CONVEB FUNCTION ...ttiiitiiie ittt e ettt e e ettt e e ettt e e sttt e e eaae e e saaeeesabseeeaasaeeaaaaeesassee e sseeeaasseesasseeeansesesnsseessseeeansessnseeesasneeesnns 62
] THE HCNVS FUNCTIONviiiuiiitieitie ettt et e et e etteeeteeeteeeaaeeeteeeteesaseaseeaseesaseeaseeaseeenseensaeesseaaseensaeasesenseeseesssesntestsesnteesteenns 64
DATA DECODING/ENCODING FUNCTIONS 64
u THE DECODE FUNCTION ...t itttteittieesteteesttee e sttt e ssteeessseeeessseeessseeessseeessseeesaseeeasseeeanseeeaaneeeeanseeeanseeeanseeeanseeensenesnsseessnne 64
[] THE DECODESDS FUNCTIONttiteeitei ettt eteeeteeetteeeteeeteeesseesteeeseesaseaseeaseesassaseeasseaaseensaeasseanseensaeaseesnseeseeasseensaeasesnseessenns 64
u THE DECODEYS FUNCTION ...ttt sttieeeetete ettt e e siteeesteeeseseeeessaeeessseeeesseeessseeesnsseeasneeeamseeeaaneeeennseeeanseeeanneeeennseeeanneesnseneennn 65
u THE DECODEREGEXS FUNCTION uttiiiititee ettt e ettt e ettt e e ettt eestseeeetaeeesaaaeesasaeesesseeeassesesnseeeasseeeansseesnseeeansesessseesanseeenns 65
] THE ENCODES FUNCTIONttiutteitee sttt et e stee sttt eteesteessseesseesseessseasseeaseesaseanseessseanseesseesssesnseensaeassesnsseseessseanseensesnseessennn 66

Page 3

U.P.M.A.C.S. SCL Language Reference Table of Contents

CHECKSUM FUNGCTIONS ...t eeseetttiee e e e e e eeetttaaeeeeeeeesstaa s eeeeeesesanansseeeseestsnanaeaeeeesssnnnssaeeeesssnnnnnsseeesessssnnnn
u THE CHKSUM FUNCTION
] THE CHKSUMLOH T FUNCTIONuviiiiiieieecteeetteete e et e ettt eeteeeteesaseeaeeeseesaseeaseeaseesaseansaessseanseenseeaseeenseeseesssesnsaenseesssestensns 67
u THE CHIKSUMH FLO FUNCTIONtttieiutitessiiee e sttt e stieestteeessaeeesssaeeasseesssseaesssseeassseeeasseseansseeesseesassseessseesassnsensseesnnsnsssns 67
] THE LRCSB FUNCTION ...outiiiiitiiie ittt ete ettt e e ettt e et e e e et e e eaa e e e aseeeeasaeeeaaseeeesseeeaasseeassee e nseeesasseeenseeeanseesnbeessnsneeesans 68
u THE LRCLOHT FUNCTION ...ttt eittteesttteestteeestteeesatteeassseeessseaesssseeasseeessseaeassseeassseeassseeansseeeasseesansseeanssaeensseeessseesnssnnesnns 68
u THE LRCHELO FUNCTION ...ttt ittt ee e e ettt et e e e ettt e e e e s ettt e e e e asaaaeeaeeeaassaasaeaeeeeassasaeeaeeaanssssaeeeeeeassssaaeeeeeannsseaeessnnssnns 69
u THE CRCLE FUNCTION ..uttieittieeseteeeetteesstteeesssaeesssseesasseeessseeeassseesassseeasseeeassseeassseeassseeansseeeasseeeansseeanseeennseesnsenesnsnneennns 70
u THE CRCCC ITT FUNCTION ...t tttttttteeeeettttteeesseestsaeeeeessasssseaeeeaaassssseaaeeaasssssssaeeeaasssssseaeeaaassssseaeesaassssssaeeeeeanssseeessnssnns 70
] THE CRCSB2 FUNCTIONtiiiutiiteeitee ettt eiteeeteeetteeeteeeteeesseeaseeaseseaseaseeasessaseenseeasseeaseensaeassesaseensaeasseanseeseessseentestseenseessensns 71
| THE CHIKSUMS FUNCTION ... vt tutteitee sttt esteesteessseesteesseessseasseesseessseasseessesssseasseessssasssessessssssnssessesssesesseensesssssansesssesnseessensns 71
] THE PRNCHKSUMS FUNCTIONuviiiiiiiieeiteectie et e ete e ettt e eteeeteesateeaeeeseesaseaaseeasessaseesseesssesaseenseeaseeanseeaseesssesnseenseesssestensns 72
TIME AND DATE FUNCTIONS ..etttieeeeeieetitiis s e e e e e e ettt s s e e e s e eetaaaaeeeeeseesttaas e eaaeeeesanansaeeeeeessnnnnaeeeeresssnnnsaees 73
] THE TEMESD FUNGCTION ...viiiuiiiieestee sttt eieesteestteesteesseesseeeseesseessseasseeaseeasseenseesseeasseesseesseeanseenseeaseeanseesenaneeansesssesnseensennn 73
u THE MKT IME FUNGCTION .11ttteeeiittttttee e e ettt ee e e e eesitaeeeeeesasaaaaeeaeeaaassaaseeeeeaanssssesaeeeeassssaseaeeaeassssaeeeeeeasssssaaeeeaanseeeeessassnns 73
u THE GMT FUNGCTION .1ttt ittt eetteee sttt e eteeeestteeessteeesssseeaasseeessseeeassseeasseeeassseeesssee e sseeeanseeeaaseee e sseeeansseeanssaeansenennsaeesnsneennnn 73
u THE LCT IME FUNGCTION .11tttteetittttiteeeeseiiieeee e e e eesitaeeeeeesessasaeeeeeaaasaaaseeaeeaasssssesaeeeaasssseseaeeaeassssasaeeeeasssssaaeeeaaasaeeeessanssnns 74
u THE MON FUNCTION .1ttt ttttte ettt e sttteeeteteestteeessteeesssteeasseeessseeeassseeasseeeasseeeesssee e sseeeansseeaaseae e nseeeenseeeannsaeenseneansaeesnsanennnns 74
] THE MONS FUNCTIONutiiiiitiiie ittt et e ettt ete e ettt e ettt e e e ae e e eaaseeeeaseeeeabaaeeasseeeeaseeeaasseeaasseeeanseeesnsseeensaeeanseesnbeeesasseeesnns 74
] THE MONABS FUNCTIONcuteiuteeitee ettt et e ste e ettt eteesteessseeabeesteesaseassaeaseesaseeaseeasseaaseesseeasseenseenseeasseenseenseesnseensaetseanseesreens 74
u THE DAY FUNGCTION ... utttittee et ietttttee e e e ettt ee e e s eestbaeeeeeeaassaaaeeeeeeaassaseeaeeeaasssssaeaeeeeassssaeeaeeeenssssaseeeeeaansssseeesanssbaaeaeessnnnsnns 75
] THE YR FUNCTION ...t eutee ittt ettt eteeete e ettt eeteeeteesateebeeeteeesseeaseeaseeeaseaaseeaseeeasseaseeesseeaseensaeasseaaseensaeesseenseeseesteesteestseanteesteens 75
u THE HRS FUNGCTION ..t e ttttte ettt e sttt e et e sttt e e sttt e sttt e ettt eesaseeesaseee e sseeeasseeeeaseee e sseeeamseeeaansee e nseeeenseeeenseeenseeeansenesnnneeennn 75
] THE MENS FUNCTION L..iitiiiuiiitie it ettt et e et e etteeeteeeteeeaaeeeteeeseeeaseeseeaseeeaseeaseeeseeeaseensaeassesnseensaeaseeenseeseessseeteestseanteesseens 75
u THE SECS FUNCTION ..uutiieittieesttieeeteeeestteeessteeesatteesssseeesmseeesnsseeasseeeasseeeaasseeeasseeeaaseeeaanseeennseeesnseeeanseeennseesnsenesnsneesnnns 76
] THE WIKDAY FUNGCTION .. .viiiutiiteeitee ettt eteeeteeetteeeteeeteessseeaseeesesesseaseeaseesaseenseeasseaaseensaeassesnseensaeasesanseessessseensestseanseessensns 76
] THE WKDAYS FUNCTION .uutiiutieiteeetteeteesteesseeesseesseessseaseesseessseasseessesssssasseessssanssessessssssnsesnsesssesessesnsesssssensesssesnseessensns 76
] THE WKDAYABS FUNCTION.eieiutiieiteee ettt e e ettt e sttt e eetaeeesaaeeesataeeaeaseeessaseessseeeassaeeaasseessseeeansesesnsseeasseeeanseseasseeasaeeesnns 76
] THE INTVMEINSS FUNCTION L..uviiitiiitieeiee st e siteete e st e steeeste e st e saaeesaeeaseesaseeaseesaeesaseenseesseesaseensaesseessseeseessseenseenseesnnesreennn 77
] THE INTVHRSS FUNCTION.eieiutiie ittt e eetie e e ettt e sttt e ettt eeeaeeeeteeeeeaaeeesaaseesaaseeeasseeeaasseeasseeeansesesnsseeasseeeansesessseeasseeesnns 77
DIALOG BUTTON CALLBACK FUNCTIONS......ettttuiieeeeeiieettiaeeeeeeeessttaeeeessessssnaaaeaeseesstannaaaasseessnnnnsaaaaeeees 77
] THE LETEMS FUNCTION ... iutiiteeitee ettt ettt e ettt te e et e s taeeteesaeeeaseesaeeaaeesaseeaseeaseeeaseenseeeasesaseenseeasseenseeseesnseenseetseanseesreens 77
| THE L ITEMEX TSTSY FUNCTION .. ctttetiitttitteeeeeettttteeeeseeaiteeeeeesssssssssaeeeaasssssesaeeeaassssseeaesaasssssseeeseasssssaeeeeaannssssaeessannnns 78
] THE MAXL ETEM FUNCTION. ..ccutteitte ettt eiteeetee ettt e eteeeteeesseesteeesesesseaseeaseesassaasesasesanseansaeasseanseensseasesanseeseesssesnsaesseanseessensns 78
u THE COUNTL ETEMS FUNCTION ...ttt tuttte ettt e stteeesnteeessteeeesmaeeessseeessseesssseeessseeessseeeanseeesnnsee e nseeesnseeeannseeennseeesnseeeannsessnne 79
] THE METEMS FUNCTIONctiiitee it ettt et ete ettt et e et e et e e eteeeteesaeeeaeeaseesaseeabeeeseeeaseensaeasseanseenseeaseeanseeseesssesnsaetseanteesteens 79
u THE METEMEX ST S FUNCTIONcuttte ittt estieeestteessteeeesiteeesateeesseeeessseeessseeessseeesnseeesnneeeenseeesnseeeaneeeennseeesnneeesnnseesne 80
] THE MAXM ETEM FUNCTION. .. ccuveeitte ettt et e eteeetteeeteeeteeesseesteeeseessseaseeasessassanseeasesanseenseeasseanseensaeasesanseenseessseenseeasensseessenns 80
u THE COUNTMEITEMS FUNGCTION ...ttt tutttettieeeesteeesntteessteeeesnaeeessseeessseesssseeessseeessseeeanseeesnnseeenseeesnseeeannseeennseeennseeesnnsessnne 81
T = S VN0 10] £ PR 81
u THE FLEN FUNGCTION L..utttiiteeeiiitteitee e e eeitaetee e e e eesiaaee e e e e aassaaaeeeeeeasssaaaeaeeeaassssseeaeeeeassssaaeaeeaenssssasaeeeeaassssaaeeeesnbaeeeeessannsnns 81
u THE FPOS FUNCTION ..utiieiitiieeittteeeteteestteeessteeesstteeaesseeessseaeassseeasseeeassaaeaasseeasseeeasseeeanssee e sseeeansseeennsaeennsnesnsaeesnsanennnns 82
REGISTER FUNCTIONS........coeevveeeeeeeeeeeenn. .. 82
| THE REGNAMES FUNCTION. ...ccutteittestteeteesteessseesseessesssseesseessesssssasseessesssssessesssesasssessesssssasssessesssesessemnsesssseassesssesssesssesses 82
[] THE ONLOGSTR$ FUNCTION83
| THE ONLOGSTRS FUNCTION ..uvtetieitieeieesitesiteesteessesssseesseesseessseasseessesssssassesssesasssessessssssnsssnsesssesasseessesssssessesssessssessessns 83
[] THE REGSTATY FUNCTION. .. ccuveeiteeeuteeteeeteeetteeteeeteeesseeaseeaseessseaseeasessasseseeasesanseesseeassesaseenseeasesasseeaseeasseenseesseaseessenns 83
u THE REGMASKY FUNCTION. ...ttt tutteesntete ettt e ssteeessteeessseeessseeessseeessseeessseeeasseeeasseeeanseeesneeeenseeeanseeeanseeennseeesneesssnnessnne 83
[] THE REGH IDDENY FUNCTIONuviiiuiiiieeiteeette et e ete e ettt e eteeeteeeaveeteeeseesaseanseeaseesaseesseessseanseensaeaseeanseeseesseesnseenseeassestensns 84
u THE REGERRYS FUNCTION ...ttt ittiee sttt see et e sttt e et e e sttt e e st e e ssse e e enseeeeseeeeamseeeeantee e nseeeenseeeenneeeennseeennneesnsneeennn 84
] THE BSTVALY FUNCTION ...eiiiiitttiitte e e ettt e e e e ettt e e e e s ettt e ee e e e ssaaeeeeeeaesssaseeaeeeaassssaseaeeaanssssasaeeeeassssaaaeeeeaansseaeessnnssnns 84
u THE BSTDLY FUNGCTION ..ettittiteiitieeettteestteeessteeestteeassseeessseaesssseeassaeeassaaeassseesasseeeasssseansseeesseeeansseeassaeennsesentenesnsnenennns 85
] THE D EGVAL FUNGCTION .1ttttteetitttttteeeeeettteteeeeseestaaeeeeeesassaaaeeeeeaaassssseeaeeaanssssesaeeeaassssaseeeeaaassssasaeeeeassssssaaeeeaaaseeeeessassnns 85
u THE DEGVAL FUNGCTION ..ot itiiteietieeetete ettt e e sitee e stteeetteeessseaeassseeasseeeasseaeassseeasseeeanseeeanssee e sseeeenseaeanneaeennseeentenesnsneeennns 85
] THE ANAVAL FUNCTION .11ttttettittttttteeeeeitteeeeeesaessaseeeeessassassseeeeaaasssssseaesaassssssaeesaasssssseaeeaaasssssseeeseassssssaeeeeaaanseeseessanssnns 85
u THE ANAVAL FUNCTION ..etiittitesitteeeteteesiteeesieeestteeaesseeessaeeesssseeassaeeassaaeassseeaasseeeassseeansseeesseeeanssaeassaeennsesentenesnsneeesnns 86
u THE ANAHEGH FUNCTION ...ttt ittiee et ettt e ettt e sttt e e st e e sateeessseeessaeeeeaseeeeseeeeamseeesaneee e nneeeanseeeannseeennseeennneesnsnneennn 86
[] THE ANALOW FUNCTIONcttiiteeitee ettt eteeeteeetteeeteeeteeesseeaseeasessaseaseeaseesaseanseeasseaaseessaeasseanseensaeasseenseeseesssesnsaetsssnseessenns 87
u THE ANAMEN FUNCTION ...t ittite sttt ettt sttt et e ettt e e st ee st eeesseeessseeeeaseeeesseeeanseeeaaneeeeanneeeanneeeenseeeanseeentenesnsneeennn 87
[] THE ANAMAX FUNCTIONttiiteeitee ettt eteeeteeetteeeteeetesesseesteeaseseaseaseeaseeeaseaseeesseeaseensaeasseanseensaesseesnseenseesssesnsaesseenseestenns 87
] THE STRVALS FUNCTION ... vt tutteitte ettt eteesteessteeteessesssseesseesseessseasseessesssssesseessssasssessessssssnseessesssesanseensesssssansesssesnsesssensns 88

U.P.M.A.C.S. SCL Language Reference Table of Contents

SERIAL COMMUNICATION FUNCTIONS

] THE DRVNDATAS$ FUNCTION

] THE DRVNERROR FUNCTION .. uviiitiiittieiteeetee ettt eiteeeteeeteeeeteeeteeeaseaseeasesssssasesasesaassenseeasesasseensaesseesnseeaseesssesnsaeaseesssessenns

] THE DRVNERRORS FUNCTIONutiiitieiieeiteeitteeteesteestseesteesteesaseeseesseessseesseeassesnseenseesssesnseensaesseesnseeseesssesnseenseesssessennn

u THE DRVENABLEDY FUNGCTION ...utttiiiiiiitiiiee e s s ettt e e e e seiiteeeeeeseessaaeeaeesaessasseeaeeeasssssaseaesaaasssssaeeeeaasssssasaeeeeanssssaeeeeansens

u THE CMDENABLEDY0 FUNCTION ...ttt tutttestieeestteeesstteessseeessseaesssseessseessssseessssessssssesassssesssssssssesssssssesnssessnssssesssseesnnsessnns

u THE DRVREADY% FUNGCTIONutttiiiiieiiiiiitiee e s s eettieeeeeeesetiaaeeeeesaessaseeeeeeaassassaeaeesaassssseeaeeaaassssseeaeseasssssseeeeeaansssseessnssnes

u THE SUSPENDEDYS FUNCTIONuttieiutiieiitieeesteeestteeesiteeessaeeesstseeassaesssseaeassseeassssesansesesnsseeesseessssseesssesenssesessssessnsnssnns
SERIAL DEVICE OBJIECT FUNCTIONSciiiieiieei ettt ettt

u THE DRVOBJIVAL FUNCTION .ttttiteitite sttt e siteeesteeessteeeesnaeeessseeessseeessseeessseeesasseeeanseeeanseeeanseeesnnseesnnseeesnsesesnsseeanseeesnne

] THE DRVOBJIVALSD FUNCTION ...cutiiiiiieieeetee ettt et e et e ettt e eteeeteeeaveeteeeseesaseaaseeaseesaseesseessseaaseenseeaseesnseeseesseesnsaenssessseatensns

u THE DRVOBJIVALYS FUNCTIONttieiititesitieeeetiee e sttt e sttee e seieeessteeesseeeessseeessseeessseeeanseeesnnseeenseeeanseeeanneeeennseeennneeesnneessnne

] THE DRVOBJIGL FUNCTION. ...cuvieittiitteeteeetee ettt eteeeteeesseesseeaseessseaseeasessassaseeasesasseesseeasseanseensseasesasseeaseesssesnsesaseasseessenns

u THE DRVOBJIHEGH FUNCTIONuttieiitiieetiee e sttt e st ee e siteee st eesseeeessseeessseeessseeeeanseeesaneeeenseeeanseeeannseeennseeesnneeesnneeesnns

u THE DRVOBJILOW FUNGCTIONutttiitieesiiiiiiieeessesttteteeeeesesissseeeesasssasseeeesaasssssasaeesaasssssseaeeaaasssssseeesesssssssaeeeeesassssseessnnssnns

u THE DRVOBJIMASKY FUNCTION ...ttt iutttestteeestteeesstteestseeessseaesssseeasseesassseesssseeasssesassssesnssessnsssssssssessnssessssesssssseesnnsessnns

u THE DRVOBJERRYS FUNCTION ...utttttteesiitttttteeeseitieeeeeeesessassseeeesassssssseeesaasssssseaeesaassssseaesasassssssaeesessssssseeeeeasnssssaessasssnns
MISCELLANEOUS FUNCTIONS..........

u THE USRPRV% FUNCTION...

| THE PVAR FUNCTION

[] THE PVAR$ FUNCTION

u THE PVAR% FUNCTION
SPECIAL PURPOSE FUNGCTIONSvvutiieieeeieitttiieeeeeeeeeettte e s e e e e eeesaaaeaeeeseesbbaaaaeeaesesssaansaeesesesssnnnseeesessrsannn

] THE DRVPRM FUNCTIONutiitee ittt ettt eiteeeteeetteeeteeeteeesseeaseeasessaseaseeaseesaseeaseeasseaaseensaeasseanseensaeaseesnseeseesssesnsaesseanseesteens

] THE DRVPRMSB FUNCTION ... vt tutteittestteesteesteessseesseesseessseasseesseessseasseessesssssasseessssasssessesssssanssensesssssssseenseessseansesssesnsesssensns

u THE DRVPRM FUNCTION 111ttttetittttttteeeseittetteeesessstaeteeesassussseeeessassssseeeesaasssssaeesaassssseaeeeaasssssaaeeeaasssaseeseaansseeeessnssnns

] THE BUFFER FUNCTIONeiutieitieitie ettt stt sttt e it e et e et e e ste e steeeateeaaeesaseesseeasaeeaseeaseeeseeeaseenseesseeensaeneeanseenseeaseeennesseennneennis

u THE TRIGGERPRM FUNGCTION ...utttttteiiiitieiteeeeesitteeeeeeeettaeeeeeessessaasaeeesasssssseeaeeaassssseaaesaassssssaaeeeaassssseeeseanssnanaaeeannsens

] THE TRIGGERPRMSE FUNCTION ... utiiutieitee ittt ete e st e sttt e steesteesaseestessaeeesseesseesaseesseeaseessseenseesseeenseeseesnsesnseenseasnneenseeannenns

u THE TRIGGERPRMOY FUNGCTIONttitetiitiiiitee e e ettt e e e e ettt e e e e e eaaaaeeeeeeessaaaaeeaeeaansaassaaeeeanssssssaaeeeaansssseeaeeeanssssnaaeeannnes

] THE RTSPRMSB FUNCTIONvtettiitteeteeitee sttt esteesaeessseesteesteeasseeaseesasessseesssessseesseeasesasseenseessseenseeseesnseenseeassesnneensenseeenns
LEGACY OBJIECT FUNCTIONS .. .eiiiititiieteeeteeetttia e e e e e e eeatta s e e e e e seeasanaseeeeeesstannnaeeeeeeestannaeaaeeessnnnnnseeanees

u THE MSGENABLED% FUNCTION

] THE PARAM FUNCTION.

| THE PARAM$ FUNCTION ..

] THE PARAMYID FUNCTIONeutieteeitte et e etee ettt e eteeeteeesteeeteeeaeeeaseeaseesaseesseeaseesaseensaeaseesasaenseeaseeensaesseasseenseeaseesnnesseesnseannas
(@ 5@ I =11 = N (a 1T N N
COMMAND REFERENCE 105
FLOW CONTROL COMMANDS.................. ... 105

u THE GOTO COMMAND....... ...105

u THE GOSUB COMMAND........ ...105

u THE ON..GOTO COMMAND105

] THE ON...GOSUB COMMAND..... ...106

u THE RETURN COMMAND106

] THE IF COMMAND106

u THE ELSEIF COMMAND107

u THE ELSE COMMAND..... ..107

[] THE ENDIF COMMAND.. ..108

u THE WHILE COMMAND.. ...108

[] THE ENDDO COMMAND..... ...109

u THE REPEAT COMMAND109

[] THE UNTIL COMMAND..... ...109

u THE FOR COMMAND.110

| THE NEXT COMMAND ..111

u THE END COMMAND....... G111
USER IMESSAGE COMMANDSceiiieeeieei i e et e et e e e e et e et e e e e e e et e e e e e e e e e e et e aaaaeeeaaaaaaaaaaaens 111

Page 5

U.P.M.A.C.S. SCL Language Reference Table of Contents

u THE PROMPT COMMANDviieittieeiutieesstieeessteeesteeessseeeessseeesseeesasseeessseeessseesasseeeansseessseeennseeesseeeannseeesnseeesnnsesnsseeen 111
] THE INFO COMMANDL.......cctiiitiiitteeteeetee ettt eeteeetteeaeesteesaeeeseeaseeasseasseeaseesaseensaeaseessseenseeaseeensseasseasseenssenssaaneesbeessseentas 112
u THE PRINT COMMANDctttteitteteiteteeetteeessteeesteeessseeeessseeesseeeaasseeeasseeeaaseeeeasseeeanseeeannseeeanseeeanseeeeanseeeanseeessnesansneeenn 113
] THE ERRMSG COMMANDoeoitiiitiiiteeitee ettt eiteeeteeesseesteesaesesseeasesasssaseeasseasssaseeasesassseseeasssenssesseessssenseeaseessseesessseanss 114
u THE CONF FRM COMMAND ...vtteittiteittteestieeessteeestteesssseeessseeesssseesasssesassseeasseeaassseeassssesssssesassessanssssenssesenssssssnsssenseees 114
u THE ASK COMMANDttttiteeeititetteeeeeiaeeeeeeeastaaeeeeeeaasaaaeeeeeaaasasssaeeeeeaasssseaaeeeanssssseaeeeaaassssesaeeeaassssseaeeaassseneeessnnssnn 115
DIALOG COMMANDSeueeeeeeireriiinnnnnnn. ... 116
u THE DIALOG COMMAND116
THE DLGT ITLE COMMANDuttiiiieiiitiitte e e e ettt e e e e e etaeeeeeeeeaaaaeeeeeeeaaasseeaeeaaassssseaeeeaasssseeaeesaasssseeeeeaannssaseaeeannrnes 117

THE DLGTEXT COMMANDcuvviittiiteeiteeetteeiteeeteeeteesteeasesasseeaseeasssaseeaseesaseesseeasessassenseeasssensseasseasssenseeassesseeensensseannas 117

THE DLGLINE COMMAND118

THE STREDIT COMMAND118

THE STREDITO COMMAND..... ...119

THE PWDEDIT COMMAND.121

THE PWDEDITO COMMAND..... 122

THE NUMEDIT COMMAND123

THE INTEDIT COMMAND125

THE CHKBOX COMMAND127

THELIST COMMAND....
THE LISTW COMMAND..
THE LISTO COMMAND..
THE LISTWO COMMAND .. .
THE SLIST COMMAND..... ...133

THE SLISTW COMMAND134
THE SLISTO COMMAND136
THE SLISTWO COMMAND 137
THE LITEM COMMAND........ ...139

THE RDGRP COMMAND..... ...139

THE RDGRPO COMMAND140

THE RDBTN COMMAND..... ..141

THE MENU COMMAND..... .141

THE MENUO COMMAND.. ..143

THE MITEM COMMAND.. ...144

THE BUTTON COMMAND144

THE BUTTONO COMMAND.145

] THE CANCELBTN COMMANDeiitieitieettieiteeetee ettt esteeetteeteeeteeeseeaseeaseessseasseeaseeasssenseeaseeensseassesssesnssesseessseenseeassannas 146
DIALOG BUTTON CALLBACK COMMANDSottuueeeeeeeettttieaeeeeeeanunieeeesestrnnnaeaeereestnnaaaeseessnaaaee 147
u THE DLGERROR COMMANDuttteititeiititeesiteeesteeessseeesssseeesseeesssseeessseeesasseeaasseeeanseeesnseeaanseessnsseesnnsesesnseeesnnseeanseeens 147

] THE SETL ITEM COMMANDeiitiiiteeitee ettt et e eteeeteesteesteeeaseeeseeesseesseeaseesaseesseeaseessseenseessseensseassesssssnseesssessseenseeaseannas 148

u THE ADDL I TEM COMMANDttiteititeiititeesiteeesteeesssaeeessseeesseeesasseeessseeessseeaasseeeansseessseesssseessnseessnnsesesnseeesnnseeaneees 148

u THE DELL ETEM COMMANDutttittetiitttttteeeeesttteteeeesssassaeaeesaaasseeeeesaaassssseaesaaassssseaeesaasssssseaeeaaasssssseessesnsssssseesasssen 149

u THE CLRLITEMS COMMAND......ceiittieiittteestteestteessueeessseeessseesssssesasseeesasseeaasssesassseeasssessasseesansessssssesesssssesnsseeenssees 150

u THE SETMITEM COMMANDuttititetiiittittee e e estteeteeeeaastaaeeeeeaaaaaaeeeeeeaaasssseeaasaaasssseaaesaassssseaeeaaassssasseseessssssseaesasssen 150

u THE ADDMITEM COMMANDtttieiutite ittt e ssteeestteesssseeessseeessseeaasseesasseeeasseeaasssesassseessseesassessansesessssesessssessnseeensenes 151

u THE DELMITEM COMMANDuttiitieiiiittitteeeeestiteteeeeesssstaeaeeaaasasseeeeesaaasssseeaeeaaasssseaeeeaassssssaeseaasssssseeesesnsssneeeeasrne 151

u THE CLRMITEMS COMMAND.......ceiittieiittteeittteestteessaeeessseeesssseesssseesassseeasseesassseeassseeasseseasseesassesessssesessssessssseeenssees 152
FILE AND NETWORK CONNECTION COMMANDS.....cceeiieetiieiieetieeeieetee et e e e e e e e saeeea e e ea e e e e e e e e eeaaeeaaeeaaeaeaeaeaaens 152
u THE OPEN COMMAND........... ..152

[] THE CONNECT COMMAND153

u THE CLOSE COMMAND...... ...154

[] THE PRINT# COMMAND155

u THE INPUT# COMMAND155
I FEle_NUMDEr IS @ Tl oo s 156
If File_number isanetwork CONNECLION:cccviiviiiiiie e 156
u THE SETFPOS COMMANDuttiiiiieiiiititttee e s esiateeeeeeeetaaeeeeeaaasssaeeeeesaaasssseaaeeaaasssseaeeeaassssssaeeeaasssssseeseeansssseeesanrnn 156

] THE LIMETELEN COMMAND0titteitieiteeiteestee sttt esteesteessseeateesaeessseesseessseeaseeaseessseenseessseenseeaseesssesnseenssesnseenseeassanes 157
REGISTER COMMANDSoiieiieee i e et et et ettt e et e e et e et e e e et e e e et e e e e e e e e e e e e e et eeaeeaaaaaaaaaaaaaaaaaens 157
u THE SETREGNAME COMMAND ..cetiutiteittteesiteeesteeesssteeessteeesseeesasseesssseeessseesssseesasssessnssessssseessnseeesnnsesasnseeesnnseeannseeas 157

] THE REVERTREGNAME COMMAND0cciutiiteeitteeteeiteeeteeateeeseeaseeaseeasssssseassseasesasseaassesseseaseesssessssesseessessssssssesaeeann 158

u THE SETONLOGSTR COMMANDutvtiititeesiieeesteeesstteeessteeesseeesaseeesssseeessseesasseesansseesanseesssseeesnsseesnnseessnseeesnnsesennsees 158

Page 6

U.P.M.A.C.S. SCL Language Reference Table of Contents

u THE REVERTONLOGSTR COMMAND.cttiittiteitetesittteesteeesseeessseeesssseeesssesssssseesssseesasseesssseesssssessnnsessssseeesnssessnnseees 158
] THE SETOFFLOGSTR COMMANDecitiiittiateeitteeteasteeeteeateeeseeasseaseessesssseasseeasesasssaaseeassssassessesssssenseessesssssssessseeanns 159
u THE REVERTOFFLOGSTR COMMANDetiitiiteititeiitieeesieeesteeessseeesssseeesneeesasseesasseeesasseesssseeesnssessnsseessnseessnnseesnnseees 159
] THE SETBSTVAL COMMANDeiitieitieettteiteeetee et esteeeteeeteeeteeeseeeseeaseessseeseeaseesaseenseeasesansseassessseenseesseessseenseessseneas 159
u THE SETBSTDLY COMMAND......ceiittteiittteeitetesteeeasueeessteeesssseeassseeeasseeesasseeasssseeassseesasseesasssesassssssssessssssessnsseeesssens 160
u THE SETD IGVAL COMMAND.....ccttiiiiitttittteesesttttteeessaetaeteeeeasasaateeeesaaassseeaesaaasssseeaesasasssseaessassssssseeseasssssssseseasnrens 160
u THE SETANAVAL COMMAND......ceeittteiittteestetesiteeesaueeessseeesssseeaasseesasseeesssseessssesassseeasssseeasseesassesessssesssssesssssseessssees 160
u THE SETANAVALGL COMMANDcciitttiitteeeeitiieteeeseeitaeteeesasssssseeeesaasssssseeeeasasssseaeesasssssssaessassssssssesesssssssseseeasnnes 162
u THE SETANAVALS COMMAND ..vtteiutiteiititeestttesteeessssesessseeesssseesssssessssseesssssesssssesassseesssssesssssssassssessssessssssssssssessnsseees 163
u THE SETANAVALSGL COMMANDutttiitteeeeittetteeeseesiaeeeeeesasasaeteeeeassssseeaeeaaassssseaeeeasssssseeaeseaassssssseseassssssseasseasnnes 163
] THE SETANAMEIN COMMANDoiitieitieettieiteeetee et e eteeetteeteeateeaseeeseeaseesaseeseeaseesaseenseeasseensseaseessssenseesseessseenseeassaneas 164
u THE CLRANAMEIN COMMANDcetititeiititeesiteeesteeesssseeessseeesseeesasseeessseeesseeeaasseeeansseeaasseeaasseeesnseeesassesesnseeesnnseeennsees 164
] THE SETANAMAX COMMAND0eitieitieettieiteeetteeteeateeateeaseaaseeaseeaseessessaseaseeasesssssenseeasesansseassesssseseesssessseenseeassensas 165
u THE CLRANAMAX COMMAND.......ceeiutiteiittteesnteeesteeessseeesssseeesaseeesasseeessseeesseeeaasseesasseeanssesssseessnseeesassesesnseeesnseesnnsees 165
] THE SET INDRANGE COMMANDueiitiiitiiiiee ittt ettt esteeetteeteeeteeeseeeseesseessseeseeasesasseaseessesasseaseesssseseesseessseeaseeaseesnns 165
u THE REVERT INDRANGE COMMAND. ... ccttiittiteititesitieeesieeesteeessseeeessseeesssesaasseeesnseeesnseeessseeesnssessnnseessnseessnssessnnsees 166
] THE SETSTRVAL COMMANDeiitieitieettieiteeeteeeteeateeeteeeteeaseeeseeeseeaseessseeseeasesssssenseeasesansseassesssssnseesseessseenseeasseneas 166
u THE MASK COMMANDeettttteittteeitteeeetueeessteeesteeesasseeeasseeeasseesasseeeassseeassseeeassseeassseeassseeasseeeasseesasseseasssesssessnssennns 167
u THE UNMASK COMMANDciiitititteeeeeiiteteeeeesitaeseeesassasaaeeeeaaasssssaeeesaaasssseeaesaaassssseaeeeaassssseaeseasssssseessesnsssseesssnnrnns 167
u THE INTMASK COMMAND ...veteittieeititeeititeesiteeesteeesssseeessseeesssseesasseeeassseeasseeasssseeassseeansseeaassessasseeenssesesssesssnsseenssenens 168
u THE INTUNMASK COMMAND.....cettteiiiittittteeeesttteteeessastsaeeeessaasasseeeesaaassseeeesaaassssseeeesasssssssaessasssssssessesssssssessasnens 168
u THE HIDE COMMANDeeiittiteiteteiitteeetite e sttt e steeesssaeeeasaeeeasaeeaasseeeasseee s sseeeassseeansseeansseeeasseaeansseesnseeeanseesnsaeeansseeenn 168
u THE UNH IDE COMMANDciiittiittee e eeiieite e e e estaeteeeeaesaaaeeeeeasasasasaeeesaasssseeaaeaassssseaeeeaassssseaeseaassssseeseeansssseessannnnns 169
SERIAL COMMUNICATION COMMANDSottuieeeeeeeeettieteeeeeeeettaaeeeeseeetttaaaeeaeseesrttaaaeaessrrssnaaaeeesseesres 169
] THE GRAB COMMAND.......cccceurennnnn.
u THE RELEASE COMMAND ...
[] THE SENDCMD COMMAND ...
u THE SENDSTR COMMANDettutiteitieeietieeeseteeesteeessseeeessseeessseesasseeeasseeesasseesssseesansseeansseesanseesanseeeennseeesnseeesnnseesseees
Sending Custom Commands to Devices That Use Legacy Device Drivers..........cccoccevvervennnnnn. 172
u THE SENDB IN COMMAND ...vetiittiteititeeitieeessteeestteesssseeassseeessseesssseeeassseeasseesssssesassseessssesassesssssssssnssesesssssesnsssesseees 172
Sending Custom Commands to Devices That Use Legacy Device DIivers.........ccccocevevevenenenn. 173
] THE DISABLEDRY COMMANDoctiiitiiitiieteeiteeeteesteesteeasteeeseeaseeaseeassessssesseeasesssssanseeasesansseaseesssssseessesssseensesasseanes 173
] THE ENABLEDRY COMMAND0eitteittestttateesseesseesseessesasseesseessesasssessesssssesseessesssssessesssesssseesssesssesseessesssssensesssenses 174
u THE DISABLECMD COMMAND ...etiieiiitttttteeeeeetiaeteeeessssseseaessasassseeeesasssssseeeesasasssssaeesasssssssseessssssssssessessssssssessesnnnns 174
u THE ENABLECMD COMMAND.......ceiiuttteiittteestttestteesssueeassseeesasseesssseesassseesasseesssssesassssesssssesssssssassssesssessssssesssssesenssess 175
u THE SUSPEND COMMANDutttiiieeeiiitittteeesestaseeeeessasssseaeeessaasssseeeesaaasssseesasaasssssssseesasssssssaessssssssssessssnssssssessnsssnes 176
u THE RESUME COMMANDviieitiieeiiitesstieeessteeesssteesssseeessseeessseesasseeesssseessseesssssssassessnsssssasssssssssssssssesesssssssnessssseees 176
SERIAL DEVICE OBJIECT COMMANDS ...ceiiiiiiiiiieiieetieeteeetteeeeeeeeeeeteeteeeeteeeeeeeeeeetreeerrerererseerererrerrrrrrrrrrree 177
u THE SETDRVOBJIVAL COMMANDcteitiieeiitieesteeessseeeessseeesseeesasseesssseeessseesssseesssssessasseesssseeesnsseesasessssseeesssseeennseees 177
] THE SETDRVOBJIVALGL COMMAND.......ccuvtiiteeittieteeiteeetteateeeteeeseeeiseessesssseesseeasesasseaaseeasesassaaseessssenseessesssseansessseeanns 179
u THE SETDRVOBJIVALS COMMANDeettttteittitesteeesstteeessteeesseeesasseesssseeesssesassseeessssessasseesssseeesnsseesnsesssseeesnsseessnseees 180
] THE SETDRVOBJIVALSGL COMMANDuviitieitiietieeiteeetteeteeeteeeteeeteeeteessseesseeesessssesseeaseseseeaseeaseseseesseessssenseesseesnns 181
u THE MASKDRVOB.J COMMAND ..cteiutiteiitteeessteeesteeessseeesssseeessseesssseesssseeesssessssssessssessnnseessseessnseessansesssnseessnsseesnnseees 182
] THE UNMASKDRVOBJ COMMANDcccttiittieteeitteeteesteesteeateeeseeaseeaseeasssssseasseasssssssaassesssssassessesssssessesssesssssssesseeanns 183
LOGGING COMMANDS ...tttuiieeeeeiitttiaeeeeeeeeattaaaeeaeeeesettaaaeaeeeeennnnnsaaeteesttnnnaeeeeeesstnnaaeeeseeessnnnnseearees 184
u THE LOG COMMANDtvteittieesitteestteesstteeessseeessssaesasseeessseeeasseesasseeeassseeansseesassseeansseeansseeeasseaeansseesnssesennsnessseesnssenens 184
u THE LIOGR COMMANDcetttititttittteeeseiteeteeesastaaeeeeeesaasssaaeaaeaaaassseeeeeaaasssseeeaeaaassssseaeesaassssssaeesaasssssseeseeansseeeeessnssnns 184
u THE LOGG COMMANDeeittteeitteeestteesasueeessseeessseeaasseeeasseeeaasseesasseeeassseeasseeassssesasssessnsssessssessansssssnssesenssssssssessnsseees 184
u THE LOGB COMMANDcttiiiitititteeeeeiteeee e e e e st eeeeeeaesasaeeaeesaasaasseaeeeaasssseeeeeaanssssseaaeeaasssseeaeeeeasssaseeeeesaseeeeessnsrnns 185
u THE LOGC COMMANDeeiitttteittetestreesatueeeasseeessseesasseeeasseeeaasseesasseeeassseeasseeaasssesasssessnsssesasssseassssesnssesenssessnsseesnsseees 185
u THE LOGM COMMANDeeiittteeittieetteeesstteeessteeesseeesaseeeessseeessseeaasseeeasseeessseeeasseeeansseeasseeeanseeesnnseseanseeesnseesnssessnsseeen 185
] THE LOGY COMMANDL.......cctieitieittieteeetee ettt eeteeeteeeteesteeaseeaaseeaseeasseasseeassesaseesaeaseeasssenseeasseensseassessseensaeassesneesbeesnseentas 185
u THE FELELOG COMMANDettittiteitite ettt e sstteesteeessseeeesnseeessseesasseeessseeesasseeeasseeeansseesaneeeeanseeesnseeeennseeesnseeesnnseensseennn 186
] THE FILELOGR COMMANDcoittiitteitteetteeiteeette ettt esteesteeasseaaseeesseeseeaseesaseessaeaseessseenseeaseeenssessessssenssesssessseensesaseansas 186
u THE FILELOGG COMMANDuttteititeiitieeesiteeesteeesssaeeessneeesseeesasseeessseeessseesasseesansseessseesanseessnsseesnnsesesnseeesnnseesnseeen 186
] THE FILELOGB COMMANDccittiiteeiteeettteiteeeteeesteesteesaeeasseeaseeesssasseesseesaseesseeaseessseenseeasseansseassesssesnseenssessseenseeaseannas 187
u THE FILELOGC COMMANDtttteititesititeessteeestteesssseeassseeessseesssseeeassseessseeaasssesassseessssesssseesansssssnssesessssessnsseesnenns 187
u THE FILELOGM COMMANDutttiiteiiiittitteeeeestiaeteeeeeeeaseeeeeeasaasaeeeeesaaasssseeaesaaasssseaaesaasssssseeeeaassssssseeesesasssseeeeasren 187
u THE FELELOGY COMMANDttiteitite sttt e stteeestteesssseeassseeessseesasseeeasseeesssseesassseeasssesssssssasseesanssssssssesessssessnseeenenes 187

DATA ENCODING/DECODING COMMANDS...

Page 7

U.P.M.A.C.S. SCL Language Reference Table of Contents

THE PARSEDEC COMMANDuttteititeiititeesiteeesteeesssueeessueeesseeesasseeessseeesasseesasseeeansseessseeesnseessnsseesnnseeessseeesnnseesseees 188
THE PARSEREGEX COMMAND ..eeeiutiieiititeeitteeesteeesetaeeesssseessseesasseeeassseesssesaassseeassseessseesasssseaasssesassesasssssesnsssesasees 188
THE SKTPDEC COMMANDettitttteitttesetieeessteeesteeesssaeeessseeessseesasseesssseeessseeaasseeeansseessseesanseeesnseesennseeesnsseesnnseenseeen 189
THE SKEIPREGEX COMMAND.cecititiiittteeitteesitteesetaeeeesteesaaseesasseeeassseessseeaassseeasseesassaeaasssaeaasssesasseseassaeesasseesansenas 190
THE APPENDSTR COMMANDL.......ceiittteiittteeitteestteessseeessseeesssseesasseesasseeesasseeassssesassssessssessasssesassssssssesassseesssseesnssees 190
THE APPENDCSTR COMMAND ...tttieiiitttittteeeesttaeteeeessestssseaesssasssseeeesasssssseeeesassssssssaessasssssssseesssssssssssesssssssssssessennsns 191
THE APPENDHEX COMMAND.ceiittteiittteeitteestteessaeeassseeesasseesssseesassseessseeassssesassseesssssssasseesassesessssesssssssssssssesnssess 193
THE APPENDENGC COMMANDcctttetiittiittteesistteteeeesseasaeeaessaasasseeeesaaassseeaesaaassssseaeesasssssseeessassssssseessesssssssessesnees 193

MISCELLANEOUS COMMANDS...........
[] THE SETPVAR COMMAND ...
THE DELAY COMMAND.c.tttteittttesteeesattteessteeesseeesasaeeessseeesseeeaasseeeasseeesseeeaasseeeansseesnseeeanseeeanseeeennseeesseeesssessnsseees
THE CALL COMMANDL.......cctiiitiiitteeteeetee ettt e eteeetteeteesteesaeeaseeaseeaaseasseeassesaseesaeaseessseenseeaseeensseasseasssensseasseeneesbeessseentas
THE DRVCALL COMMAND ...eetiittiteittteeetieeessteeesteeessseeeessseeesaseeesasseeessseeesanseeeasseeeanseeeannseeeanseeesnseeeeanseeeanseeesnnseensseennn
THE CALLRMT COMMANDuvtiitiiiteeiteeetteeiteeeteeeteesteessesasseeaseessssaseeaseesaseaseeaseeasssenseeasssensseaseeassssnseeaseessseenseesseennes
THE RUN COMMANDttteitiieesitieesteeeesteeeessteeesseeesasaeeessseeesaseeeeasseeeasneeesasseeeanseeeanseeeaaneeeeanseeesnneeeeanseeennsnesnseeeensneeenn
THE DRVRUN COMMANDoeoitiiitiiiteeeteeetteeiteeeseeeteesteessesaseeasesasssaseeasssssssaseeasssassseseeasesensseassessssenseessesssssesessseannes
THE RUNRMT COMMAND
THE LAUNCH COMMAND
THE STOPNET COMMAND ...
u THE STARTNET COMMANDcuttitttetiiitittteeeseettsereeesaassssseeaeesaassssaeeesaaasssseaasaasssssseeeeassssssseesaasssssssessessssssssessasssnes
SPECIAL PURPOSE COMMANDSoiiiiittiieeeeeeeettiaeeeeeeeeestaaaeeaeeeesttaa s aeaaseessstansaassessssnnnaaaaaeseesrrnnnnns
[] THE SABUSREPLY COMMAND ...
u THE SABUSERROR COMMAND ...
[] THE RTSSEND COMMAND.
u THE RTSERROR COMMANDcttiiititeiititeesiteeesteeessseeesssseeesseeesasseeessseeessseesasseesanseeessseeeasseessnsseesnnseeesnseeesnnseeanseeens
LEGACY OBIECT COMMANDS.ctttuiieteeeteeetttaaaeeeeeeeettaataeaaeeeeattaaeessesttanaaeeaessesstaaaaeaeeeesssrnaasaaeeees
| THE SENDREPLY COMMAND......
u THE DISABLEMSG COMMAND ...
| THE ENABLEMSG COMMAND......
u THE SETPARAM COMMANDtttteititeistiteessteeesseeesasueeesssseesssseesssseesassseesssseesssssesassssesssssesssssesassssessssesessssssssssseasseess

OBSOLETE COMMANDSeiiieeettteeeeeeteeetta e e eeeeeeeestsaa s eeeaeessaaaaeeeeseestaaaaseeeeeesssanssseeseesssnnsnseeeseesrren

APPENDICES 207

APPENDIX A: ALPHABETICAL LIST OF KEYWORDS.....cvuuiieittiieeitieeeeeteeeeetieeesteeesstneessssnessssnneesssseesssnnns 207
207
207
207
207
207
207
207
207
207
207
207
207
208
208
208
208
208
208
208
208
208
208
208
209
209
209

N-<><E<C—ICD;UO'UOZZI_XQ_IO'I'IITIU(jw>

Page 8

U.P.M.A.C.S. SCL Language Reference Table of Contents

APPENDIX B: LIST OF ERROR IMESSAGESctiiiiiiiiiiiiiiiisisitiie sttt e e sinae s 210
Array has wrong number of diMeNSIONSc..ooiiiiiiiii s 210
AITAY NAME EXPECTEA ... ittt ettt ettt eesbeaseeseeeteenteseeeneennenneens 210
Array SUDSCIIPL EXPECIEA.ccveiie et e e e ee e nreenes 210
F AN g -\ (o0 I - T o= SR 210
ASSIGNMENt OPEratOr EXPECTEAc.veueeiieiiiiiitite sttt bbb 210
=TT B O 4 LY 1 o SRR 210
Bad expression list termination..........ccoceiiiieii i 210
Bad NEX VAIUE SEIING.....viieiieiieiieeieee et 210
T T UL d o] €1ST] o] PSP 210
Binary Operator EXPECIEAcccuveiie e nrs 210
Boolean deCoder EXPECLEAcccveiiiiiiie ettt 210
[Te] (o T q 1= ox (=T ST 210
Boolean Variable eXPECIEc.coiiiiiieii e 210
Byte (-128 t0 127 0r 0 t0 255) BXPECLEAcveevveiiecieeie ettt 210
Command or asSigNMENTt EXPECTEMervereieiiiiiriesie et 210
Device driver ODJECT IS WIONQ TYPE ..oveeiieiiieeie ettt 211
Device driver parameter iS WIONG tYPE ...cuveiveeeieieeieitese et e e see st sre st sre e sre e 211
Dialog list has no item with that NUMDEN ... 211
Dialog list item command or function outside dialog subroutine............cccceccevoviieneinennne 211
Dialog list item command or function variable not used in dialog.......c.c.cccoeevevivevirniineinnnnn 211
Dialog menu has no item with that NUMDBEN ... i 211
Dialog menu item command or function outside dialog subrouting...........ccccccooeevevvieenene 211
Dialog menu item command or function variable not used in dialog........c.ccccceevvvvvvvivennnnnn 211
Dialog 0bJECt IS NOL @ LISc.veiviciie e 211
Dialog ODJECT IS NOT 8 MENU ...t 211
[0 L A=) o< 1= o SRS 211
LAV o] T Y= o RS 211
"DLGERROR" outside dialog SUBIOULINEccooiiiiiiiieccc e 211
"DLGERROR" variable not used in dialogcccooeiiiiiiiiiie e 211
"DO" WIthOUL "WHILE" ..ottt et ene s 211
DUPHICALE "ELSE" ...t sttt re et nre e 211
Duplicate File NUMDET ..o 212
Duplicate liNe NUMDEToo e 212
D010 FTor: 1 (= oo AU PSPR 212
Duplicate program argUIMENTcuiiiiriirereieieeee ettt 212
PELSE" WItNOUL "I ...ttt be et 212
"ENDDO™ WIthOUL "DO" ..ottt 212
"ENDIF" WITROUL ™I ..o ettt 212
EXpression is N0t @ Variablecoo i 212
EXPresSion iS NOL N @ITAYccveeieeieeieesiesie e steeste e st e st et eeee e e sre e sreesreesneesneeanreenseesreenseeans 212
FAIE NOL OPEN ..ottt et et esbe s reenbesreeneentesre e 212
File was opened for reading ONYccoeoiiiiiiiii e 212
File was opened for Writing ONIY ..o 212
Identifier iS NOt @ FUNCHIONooiiiiie s 212
[AENTITIEr IS NMOT AN AITAY ...ttt ebe e 212
Hlegal array SUDSCIIPL.eieieie ettt seeereenes 212
HHEQAI CNAIACTET ... cciie e e e e ste e s e e sne e s e e sreesneennee s 212
Illegal command for device driver Programcccceveieeiieiesieerese e 212
LT o T T USRS 212
Illegal function for device driver Programccccceeiieiieiieeie e e see e sre e 213

U.P.M.A.C.S. SCL Language Reference Table of Contents

[1egal lINE NUMDET ...t 213
HHEQAI VAIUB. ...ttt sttt n e sbeene e aeene e e e nreenes 213
INAPPropriate COMMANGc.ecueeii et re e sre e sre e sreesreesreesneeanneas 213
INAPPIOPIIALE TUNCTION......eiiiiiiiiitc et 213
"INPUT#" needs length for network connectioncoceeeiieiieieneie e 213
Integer (-2,147,483,648 10 2,147,483,647) eXPECIEAccvveivriiice e 213
Maximum number of inStructions eXCEUEd...........ccoveviriiiiiiii s 213
Misplaced array SUDSCIIPTc.oieiiieieiiii e 213
Misplaced DINArY OPEIaLOrceo ittt eeenee e 213
Misplaced COMMANGcoviiiiiie et re et ane e 213
Misplaced COMMANT SEPAIATONccveveieiiiiieiirieite et 213
Misplaced deCimal POINT.........c.ooiiiiiiee e 213
YT 0] Tot T IR o] RS 213
MISPIACEA "ELSEIF" ...t 213
MiSPIACed "ENDDO"...... .ottt bbb 213
MISPIACEA "ENDIF" ..ottt 214
MiISPIACEA EXPONENTc.eiiiiie ettt ettt et et aesre e b e sreene e tesre e 214
Misplaced line continuation CharaCter ("\") ... 214
MISPIACET "LITEM™ottt 214
MISPIACE "MITEM ..ot 214
Misplaced parameter SEPArator (,™)voeiererrereieiei st 214
Misplaced print [iSt SEPArAtOr (™) ...eeeerereeere et 214
MISPIACEA "RDBTIN™ ...ttt bbbt 214
MISPIACEA FEMAIK . .eveiiiiiee sttt e s re et et e sreene e teaneens 214
IMISPIACET STGN ...t bbbttt 214
MISPIACEA "UNTIL" ...t 214
MISPIACEA VAIUE ...t te et sre e re e 214
IMISSING AITAY NMAIME.......tiitiititeeee ettt b bbb e e bt b ettt e b e e e e e st et e b b e 214
T3] [T TR 5 1 SR 214
MISSING "ENDDO" ..ottt 214
MISSING "ENDIF"ottt sttt et e stesseesaesteeneentesneeneeneeans 214
MisSiNg "GOTO" OF "GOSUBccoiiiiieiieeeree e 214
MISSING "THEN ...t 214
T3] [T T O SRS SRTI 215
UNEXT" WIthOUL "FOR™ ...ttt st esaeste e nnas 215
Network connection has N0 Size OF POSITIONcocviiiiiiiiiee e 215
NUMDEE EXPECIEU ...t ettt et et et e s aesreesbesteeneetesre e 215
Numerical deCOUEr EXPECIEM.cviiiiiiiiit e 215
Numerical variable @XPECTEa..........c.oii it 215
OVEITIOW ...t 215
Parameter liSt EXPECIEAocveiiiiicie ettt 215
POrt NOt Grabbed........oeiie e 215
Positive integer (1 to 4,294,967,295) €XPECLEA.......cccvevieiieeiie e 215
REGISIEr IS WIONG LYPE 1ottt sttt sttt et saeere e besneeaesteanee s 215
"RELEASE" WIthOUL "GRAB ...ttt st s 215
"RETURN" WithoUt "GOSUB"c.ooiiiiiiiiiie e 215
SeCONd "CANCELBTN" ..ot 215
SECONG "GRAB ...ttt reenaenrenne s 215
Second "SABUSREPLY" or "SABUSERROR"ccoiiiiiiiie e 215
Single statement after "ELSEIF"cco oo 216
"STEP™ WIthOUt "FOR™ ...t 216

U.P.M.A.C.S. SCL Language Reference Table of Contents

= String contains non-printable CNAraCters...........ccoviiiiiiiieicce e 216
LIS 1 [0 o (=Yoo o [T =) q 1= od =T SR 216
LT] 0T T o 0T (o SR 216
=SNG Variable EXPECTEU. ..ot e 216
m SUPErflUOUS Array SUDSCIIDL.oii ettt enen 216
LTV 1 = VG T o] PSSR 216
B TTHEN WITROUL "It 216
B TO" WITNOUL "FOR" ... bbbttt 216
LI oo I £V U0 00T £ SRR 216
B T00 FEW INAICES ...t bbbttt b e 216
B T0O0 TEW PATAIMELETS. ...tttk se ettt b e 216
B TOO MANY BIGUIMEBIES.utiitieitieitie ettt ste ettt sbe e sheesae e s sbe e be e be e sbe e st e e esbeenbeenbeesbeesaeeenneanne 216
LT 0T I 4 =) YT T [o0 S 216
B T OO0 MANY PAIAMIELEES. ..eeiiieii ettt sttt sttt e e st e et e e st e e bee e sabe e e sbbeesrbeesnbeeesnbeeesanee e 216
= Trigger object parameter iS WIONQG TYPE .. .ocueiueeiereeie et eeeie sttt see e enes 216
LT Y/ o T- T 4011 4 1 o] o RS 216
o Unexpected end OF TINEocuiieei e s 217
= UNKNOWN PPIICATION ...t 217
LI U101 (011 o <o o o T SR 217
= UnKNOWN deVICE COMMEANT......c.oiiiiiiiiiiiiieiteieieee ettt 217
B UNKNOWN GEVICE AFIVET ... iuiiiieie ettt sttt sttt sae et nnaenesreanee e 217
= UNKNOWN deVvice driVer ODJECT........coiiiiiiiiee ettt e 217
= Unknown device driver Parameter........cocveiviiieiie e seesee st e et e ee e e nns 217
B UNKNOWN GEVICE MESSAUEcuveveeieerreitietestesteestesteestesteeseesbestaesesteaseesrestaesbesteessestesnaesresreenes 217
B UNKNOWN EVICE TEPIY ..ottt 217
B UNKNOWN GEVICE FESPOMSE ...uvviiuieeieeiteesteesteeeteesteesteesaaesseesseeanteesseessessseeaseeeseeessesssesssessneeanes 217
B UNKNOWN BNCOAET ...ttt bbb bbbttt e 217
B UNKNOWN TINE NUMDEL ..ottt sttt st et snaeaesee e e 217
B UNKNOWN PAIAMIELETeeiee ittt ettt ettt e et este e eneesteeneesaeaseeseesbeeseeseesneensesneeeeneeenes 217
LI U 10T T =TT £] SR 217
B UNKNOWN SCL PrOGIAM ..viviiiiiiietiiiesiest ettt sttt 217
B UNKNOWN SEIAT POMT....eieieiieiee ettt e st e e sbe e e see s s 217
= Unknown trigger ObJECT PATrAMELENcccveieeiee et e e 217
» Unmatched left parenthesis ("("").e e oo 217
= Unmatched right parenthesis (")™) ...eovoererereeecee e e 217
= Unmatched start array sSubscript Character ("[")....cooeoeeeeerereee e 218
» Unmatched string delimiter (double QUOLES)........ccocvveiiiiiiie i 218
= Unsigned integer (0 t0 4,294,967,295) EXPECLEcceviriiriirieieieise e 218
B UNTIL WIthOUE "REPEAT ...ttt sttt sttt 218
I B 111 = Y o 1=Tod (=T RS 218
o Variable IS NOL AN AITAYccveieie e e s ene 218
m Variable Name eXPECIEA.........cc.iiiiie e 218
B WroNg "NEXT" Variable. ..o 218
CONTACT INFORMATION 219
U.P.M.A.C.S. COMMUNICATIONS INC....utriiiiitiiieiitiiie sttt st bae e s sbne e snaen e 219

Page 11

U.P.M.A.C.S. SCL Language Reference Introduction

THE SCL PROGRAMMING LANGUAGE

Introduction

SCL is a control language based on the BASIC programming language.

Each line of an SCL program consists of an optional line number, followed by a series of
commands or assignments separated by colons (“:”). SCL keywords are not case sensi-
tive, i.e. “print” is treated the same as “PRINT” and “PRinT”.

Keywords are words that SCL knows. Some keywords are built into
the language, like GOTO and CHR$. Others, you define yourself by
creating variables.

All keywords must be unique.

Here are examples for lines of SCL code:

10 PRINT *‘Hello, World"
A=10 - GOTO 10

Long lines of code can be broken into several lines using a backslash (“\”) as a continua-
tion character:

10 PRINT \
"Hello, World"

You cannot place the continuation character in the middle of a string, number, or key-
word.

Page 12

U.P.M.A.C.S. SCL Language Reference Language Components

LANGUAGE COMPONENTS

Remarks

You can place remarks and comments in an SCL program using the REM statement. SCL
ignores everything after the REM statement. If the REM statement follows a command or
assignment, separate the two with a colon.

Here are some examples of REM statements:

REM This is a comment ignored by SCL. It is intended for the user
GOTO 1:REM *** Go back to the beginning. ***

Literal Values

Literal values are values that are hard-coded into your SCL program. There are two types
of values you can specify in a program:

Numbers

Numbers are just that: numbers. You can either enter decimal numbers, or you can enter
hexadecimal, octal, or binary numbers by placing the base prefix before the number.
The base prefix for hexadecimal numbers is the $ sign, the base prefix for octal numbers is
the & sign, and the base prefix for binary numbers is the % sign. Hexadecimal, octal, and
binary numbers cannot contain fractions or exponents.

Examples of decimal numbers:

10
12.4
6.21E+23

(the third number is 6.21 - 102%)
BExamples of hexadecimal numbers:

$2F
$0D04
$3

Examples of binary numbers:

%1001
%01
%1111001

Examples of octal numbers:

&35407
&220
&00503

Strings
Though SCL strings can contain text or binary data, string literals only support text. Enclose
the text in double quotes:

"This is a string literal in double quotes”

Page 13

U.P.M.A.C.S. SCL Language Reference Language Components

Constants

Constants are keywords that represent certain fixed values. You can never change the
value of a constant, and you cannot define any constants yourself. SCL has six built-in
constants. Each constant has one of three types: numerical, string, or Boolean type.

Name Type Value

TRUE% Boolean true

FALSE% Boolean false

Pl numerical 3.14159265359

RET$ string carriage return (Hex $0D)
TABS$ string tab character (Hex $08)
QUTS string double quotes (“'**)

Boolean values are values that can be either true or false.
They are used in |F statements, for example.

Reserved Variables

Reserved variables are keywords that the SCL interpreter sets to certain values represent-
ing important information. Like constants, You cannot change the value of a reserved
variable. Unlike constants, however, the value of a reserved variable may be changed
by the SCL interpreter while the program is running. SCL has seven reserved variables.
Each reserved variable has one of three types: numerical, string, or Boolean type.

Examples of reserved variables include the name of the program being executed, the
current time, and the name of the user that is currently logged on.

User Variables

User variables are keywords that you define yourself for your own use. A user variable is
automatically created and set to a default value (see below) the first time you use it. You
can change the value of a user variable by using an assignment, or by using a com-
mand that changes the value, like the INPUT# command.

User variables can have one of three types: numerical, string, or Boolean type.

The name of a user variable consist of any combination of letters, digits, and the under-
score character (“_"), followed by an optional type suffix. The first character in a variable
name cannot be a digit.

SCL determines the type of the user variable by its suffix:

> No suffix: numerical variable
> & string variable
> %: Boolean variable

Page 14

U.P.M.A.C.S. SCL Language Reference Language Components

Don’t separate the type suffix from the rest of the name by spaces.

Examples of numerical variables: Examples of string variables: Examples of Boolean variables:
A A$ A%
B2 ERROR_MESSAGES$ REMOTE_MANUAL%
POWER_IN_DBW PARAM_01$ SWITCH_03_ON%

SCL initializes user variables to the following values:

» Numerical: 0
» String: empty string
» Boolean: false

Variables specified by program arguments are automatically created and set to values
defined by the argument, and are not initialized to the default values. Similarly, variables
specified in variable command parameters of SABus commands are automatically cre-
ated and set to the value parsed from the SABus request packet.

Arrays

Arrays are a special kind of user variables. They contain a whole set of values, instead of
just one.

Indices

Each individual value stored in an array is called an element. Each element has its own
index or indices. An index is simply an integer number (positive, negative, or zero).

How many indices are needed to specify an element depends on the number of dimen-
sions the array has. A one-dimensional array needs one index, a two dimensional array
needs two indices, etc. SCL determines the number of dimensions of an array by the
number of indices you specify the first time you use an element.

Once you have used an array, you can never change the number of dimensions it has.

Creating Arrays

You create an array simply by using one of its elements. SCL will determine the number of
dimensions the array has from the number of indices you specify. The same rules apply
for array names as for user variable names.

The elements of an array are initialized to the same default values as user variables.

Accessing Elements

You can use an array element anywhere you would use a regular user variable. To spec-
ify an individual element, put the indices in square brackets after the array name. If the
array has more than one dimension, separate the indices by commas.

To access the element with the index 2 of the array MESSAGES$, for example, you could
write any of the following:

Page 15

U.P.M.A.C.S. SCL Language Reference Language Components

MESSAGES$[2]
MESSAGES$ [1+1]
MESSAGES[1/SIN(P1/3)]

If you happen to have a variable A with value 6, you could also write:

MESSAGES[A/3]

You can use any numerical expression as an array index. Arrays are theoretically infinite
in size, but they must fit into available memory, of course.

To access the element with indices X, Y and Z in a three-dimensional array called FLUX,
write the following:

FLUX[X,Y,Z]

Functions

Functions are keywords used to perform predefined calculations or to retrieve informa-
tion. SCL has a multitude of pre-defined functions, described in the function reference.
Each function takes one or more parameters (numbers, strings, or Boolean values), and
returns a certain value that depends on them.

Examples of functions include the square root function SQRT, and the function CHKSUMS,
which calculates the modulo 256 checksum of a string.

There are numerical functions, string functions and Boolean functions, depending on the
type of the value they return. You can use a function anywhere you would use a con-
stant or a literal value of the same type.

To use a function, specify its parameters in parentheses after its name. If the function
takes more than one parameter, separate them by commas.

You can use any expression as a function parameter, as long as the result has the re-
quired type.

BExamples:

SQRT(2)
LEFT$(AS$,4)
LNCINPUT_VALUE/10)

Mathematical Expressions

SCL has a fully qualified mathematical expression parser. This means that you can enter
complex equations directly into SCL code. SCL fully supports nested brackets (“()”), as
well as the following operators:

Operator Result Type Function
+ numerical adds two numbers
+ string concatenates two strings (attaches them together)

Page 16

U.P.M.A.C.S. SCL Language Reference

Language Components

AND
AND
OR
OR
XOR
XOR

<>

<, >, <=, >=

NOT

numerical
numerical
numerical
numerical
Boolean

numerical
Boolean

numerical
Boolean

numerical

Boolean

Boolean

Boolean

Boolean

subtracts two numbers

divides two numbers

multiplies two numbers

raises one number to the power of the other (2/43=8)
logical and

bitwise and

logical or

bitwise or

logical exclusive or

bitwise exclusive or

determines if two numbers, strings, or Booleans are
equal

determines if two numbers, strings, or Booleans are
not equal

compares two numbers or strings

inverts a Boolean (turns true into false and vice
versa)

Examples of numerical expressions:

1.25 + 3*A + 1.2%AN2 + 3.2*A’3 + 4.4*AN
SQRT(A2+B"2)
(-b+SQRT(b"2-4*a*c))/(2*a)

Examples of string expressions:

A$+CHKSUM$ (A$)+CHR$($0D)
"Your name
"Publius"+TABS$+"Vergilius"+TAB$+""Maro"+RETS$

Examples of Boolean expressions:

REGSTAT®%(*'Remote’”) AND REGSTAT%("'Manual')
NETUP% OR OVERRIDE=1
A<2 OR (A$=B$ AND NOT F%)

:"+NAMES$

Operator Priority

Operators are evaluated highest to lowest priority. This means that 1+2*3 is interpreted as
1+(2*3) rather than (1+2)*3. Operators with the same priority are evaluated left to

right.

Here is a list of all operators from highest to lowest priority:

N

*/

+, _

NOT

=, <>, <, >, <=, >=
AND

OR, XOR

Page 17

U.P.M.A.C.S. SCL Language Reference Language Components

Assignments

An assighment lets you assign a value to a user variable or array element. You place an
assignment by itself on a line of code, or separated by colons (“:”) from other assign-
ments or commands.

An assignment is a user variable or array element followed by an equal sign and an ex-
pression of the same type as the variable. SCL will set the value of the user variable or
array element to the result of the expression.

Commands

Command are keywords that let you perform certain actions, like setting the value of a
register, asking the user for input, or jumping to a different place in the program. You
place a command followed by all its parameters on a single line of code, separated by
colons (“:”) from other commands or assignments.

Commands can take arguments. Some commands do not take any arguments, some
commands take expressions, others variables, still others both. Some commands can
have optional arguments, or a variable number of arguments.

Command arguments are not enclosed in parentheses. They simply follow the com-
mand, separated by commas. Here are some examples:

GOTO 20
SETDIGVAL "HPA 1 Frequency Channel™, 12

Page 18

U.P.M.A.C.S. SCL Language Reference Programming Methods

PROGRAMMING METHODS

Program Arguments

SCL programs can have a number of arguments. The object that runs the program, e.g.
a control button or processor source, can supply any number of arguments. Each argu-
ment specifies a user variable name and a corresponding value. A variable with the
given name is created and initialized with the value. This allows you to reuse the same
program for similar tasks, and prevents repetitive writing of many programs with small dif-
ferences.

Conditional Statements

SCL conditional statements come in two flavours:

Single Command Conditions

A single command condition allows you to specify a command or assignment that wiill
only be executed if a certain Boolean expression (the condition) is true. A single com-
mand condition uses the IF and THEN keywords:

IF condition% THEN command
The command will only be executed if condition% evaluates to true.

IF-THEN-ENDIF Blocks

An IF-THEN-ENDIF block allows you to specify a block or a series of blocks of com-
mands and assignments that will only be executed if a number of Boolean expressions
are true. The simplest IF-THEN-ENDIF block is constructed using only the IF, THEN, and
ENDIF keywords:

IF condition% THEN
command 1
command 2
command 3
etc.

ENDIF
The commands will only be executed if condition% evaluates to true.

Note how the first command is not on the same line as the THEN keyword. If you place
them on the same line, you must separate them using a colon, or the parser will interpret
it as a single command condition.

You can also specify another block that is to be executed if condition% is false by using
the ELSE keyword:

IF condition% THEN
command 1

Page 19

U.P.M.A.C.S. SCL Language Reference Programming Methods

command 2
command 3
etc.

ELSE
command 4
command 5
command 6

etc.
ENDIF

The commands 1, 2, 3, etc. will be executed if condition% evaluates to true. If
condition% is false, commands 4, 5, 6, etc. will be executed instead.

You can specify multiple conditions by using the ELSEIF keyword:

IF condition_1% THEN
command 1
command 2
command 3

etc.
ELSEIF condition_2% THEN

command 4
command 5
command 6

etc.
ENDIF

If condition_1% is true, commands 1, 2, 3, etc. will be executed.

If condition_1% is false, but condition_2% is true, commands 4, 5, 6, etc. will be exe-
cuted.

You can have any number of ELSEIF blocks within an IF-THEN-ENDIF block. You can
also combine ELSEIF and ELSE blocks:

IF condition_1% THEN
command 1
command 2
command 3
etc.
ELSEIF condition_2% THEN
command 4
command 5
command 6
etc.
ELSEIF condition_3% THEN
command 7
command 8
command 9

etc.
ELSE

command 10
command 11
command 12

Page 20

U.P.M.A.C.S. SCL Language Reference Programming Methods

etc.
ENDIF
If condition_1% is true, commands 1, 2, 3, etc. will be executed.

If condition_1% is false, but condition_2% is true, commands 4, 5, 6, etc. will be exe-
cuted.

If condition_1% and condition_ 2% are false, but condition_3% is true, commands 7, 8,
9, etc. will be executed.

If all conditions are false, commands 10, 11, 12, etc. will be executed.

Line Numbers, Jumps, and Subroutines

Line Numbers

You can jump to a different line in an SCL program by using line numbers. A line number
is simply a number that you place at the beginning of a line:

100 A=7

This line is line number 100. The line numbers need not be in order, and not every line has
to have a line number. The following code will execute error-free:

20 PRINT "Hello!"
PRINT "My name is Johnny."
3000 GOTO 0: REM This line number is never used.

O PRINT "We have reached line number zero!"
PRINT "Let"s start over"
GOTO 20: REM Go back to the beginning.

Each line number must be a unique integer between 0 and 4,294,967,295. You cannot
use the same line number twice.

Jumps
To jump to a line with a certain line number, use the GOTO command:

GOTO 100: REM Jump to line 100
PRINT "This line is never executed"
100 END

You can use any numerical expression in a GOTO statement, as long as it results in an exist-
ing line number:

A=5
GOTO 10*A
50 PRINT "Hurray!"

Page 21

U.P.M.A.C.S. SCL Language Reference Programming Methods

Subroutines

Subroutines are not specially marked in SCL, and do not have names. You jump to a sub-
routine using the GOSUB (go to subroutine) command. The subroutine will end once a
RETURN statement is encountered. After the subroutine has finished executing, SCL wiill
continue with the statement after the GOSUB statement.

REM Main program body
PRINT *'Starting up.."
PRINT "Trying the subroutine..
GOSUB 10000: REM Call the subroutine
PRINT "Returned from subroutine!"
END: REM if this end were not here
REM execution would continue into the subroutine.

REM Subroutine
10000 PRINT "I™"m in the subroutine!"
RETURN :REM return to where we came from

You can call subroutines from various places in the program. The RETURN command will
always return to the statement right after the last GOSUB. You can also call subroutines
from within subroutines.

If SCL encounters a RETURN when not within a subroutine, an error is generated.

Multibranching

SCL has a special way of jumping called multibranching. Using the ON..GOTO and
ON..GOSUB commands, you can jump to different line numbers of subroutines depending
on the value of a numerical expression. You can specify line numbers to jump to for val-
ues of 1, 2, 3, 4, etc.. An ON..GOTO multibranch looks like this:

ON index GOTO 100, 110, 120, 1000

This command will jump to line number 100 if index is 1, to line number 110 if index is 2,
to line number 120 if index is 3, or to line number 1000 if index is 4. for all other values of
index, the command will not jump at all, but continue with the next line.

You can specify any number of line numbers.

The ON..GOSUB command works just like the ON..GOTO command, but the line numbers are
treated as subroutines. Use the RETURN command to return from the subroutine.

Loops

WHILE-DO Loops

You can tell SCL to execute a block of commands and assignments repeatedly as long
as a Boolean expression is false. You do this by using a WHILE-DO loop. WHILE-DO loops
come in two flavours: Single command loops and WHILE-DO-ENDDO blocks.

A single command loop looks like this:

Page 22

U.P.M.A.C.S. SCL Language Reference Programming Methods

WHILE continue_contition% DO command

A WHILE-DO-ENDDO block looks like this:

WHILE continue_contition% DO
command 1
command 2
command 3

etc.
ENDDO

Note how the first command in the WHILE-DO-ENDDO block is not on the same line as the
DO keyword. If you place them on the same line, you must separate them using a colon,
or the parser will interpret it as a single command loop.

In either case, the program checks continue_condition% when it reaches the WHILE
keyword. If continue_condition% is true, the command or block of commands is exe-
cuted, and the program jumps back to the WHILE statement to test
continue_condition% again. If continue_condition% is false, the command or block
is skipped, and execution continues after it.

These two things to distinguish WHILE-DO loops from REPEAT-UNT IL loops:

» The block may not be executed at all.
» The loop is aborted when the condition is false.

REPEAT-UNTIL Loops

You can tell SCL to execute a block of commands and assignments repeatedly until a
Boolean expression is true. You do this by using a REPEAT-UNTIL loop:

REPEAT
command 1
command 2
command 3

etc.
UNTIL stop_condition%

Every time the program reaches the UNTIL statement, it evaluates stop_condition%. If
stop_contition% is false, it jumps back to the REPEAT statement. If stop_condition% is
true, it goes on to the next command or assignment after the UNTIL.

These two things to distinguish REPEAT-UNTIL loops from WHILE-DO loops:

> The block is executed at least once.

» The loop is aborted when the condition is true.

Page 23

U.P.M.A.C.S. SCL Language Reference Programming Methods

FOR-NEXT Loops

A FOR-NEXT loop allows you to specify a block that will be executed a specific number
of times. This is done by “counting” from one number to another. You must specify a nu-
merical variable or array element that the program uses to count. a simple FOR-NEXT
loop looks like this:
FOR counter = initial_value TO final_value

command 1

command 2

command 3

etc.
NEXT counter

(You can also just write NEXT instead of NEXT counter)

The program will start “counting” by setting counter to initial_value. It will then exe-
cute the block of commands. Once it reaches the NEXT statement, it will add 1 to
counter and execute the block again.

The block will be executed once with counter set to each value between
initial_value and final_value, inclusive. You can, of course, access counter within
the block like any other variable.

If Final_value is less than initial_value, the program will count backwards.

initial_value and final_value do not have to be integers. You can count from -3.2
to 7.2, if you need to. If you specify a final_value that will not be reached exactly, the
program will stop counting before it reaches final value:

FOR counter = 2.1 TO 8.5

This will count 2.1, 3.1, 4.1, 5.1, 6.1, 7.1, 8.1, and then stop.

If you need to count is increments other than 1, use the step command to specify the
increment:
FOR counter = initial_value TO final _value STEP step_size
command 1
command 2
command 3

Page 24

U.P.M.A.C.S. SCL Language Reference Programming Methods

etc.
NEXT

If step_size is positive, the program counts forward. If step_size is negative, it counts
backward. If the sign of step_size would cause the program to count in the wrong di-
rection (i.e. away from final_value instead of towards it), the block of commands is
executed once with counter setto initial_value. A step size of 0 is not allowed.

After the loop is finished, counter will be one step-size beyond the value it had when
the loop last executed. In the example used above:

FOR counter = 2.1 TO 8.5

counter will have the value 9.1 after the loop is done.

If step_size is 0, the parser generates an error.

If the variable specified in the NEXT statement is not the same as that specified in the last
FOR statement, the parse generates an error.

Messages to the User

When to Use Which Command

SCL has several ways in which you can communicate with the user. You can display
three kinds of messages:

» INFO, PRINT, and ERRMSG dialogs have only an OK button
» CONFIRM dialogs also have a Cancel button

» ASK dialogs have a Yes and a No button

The title of the message window will be the program title.

The messages are constructed using an internally maintained buffer. This buffer is filled
with text by using the PROMPT command.

When you use any of the message commands, the output buffer will be shown in a mes-
sage window. Once it has been displayed, the buffer will be emptied.

The PRINT, INFO, and ERRMSG commands allow you to specify additional expressions to
be placed in the buffer. The CONFIRM and ASK commands only use the text already in
the buffer.

Page 25

U.P.M.A.C.S. SCL Language Reference Programming Methods

Example of an INFO message: Example Program
PROMPT *'The world will end "; @ The world will end in 30 days.
INFO "in '";2*15;" days."

displays the following window:

Stz el 2 BRI s Example Program [|
PROMPT **Sumer is icumen in" & Sumer is icumen in
PROMPT "Lhude sing cu-cu'" Lhude sing cu-cu

PRINT

displays the following window:

Example of an ERRMSG message: Example Program
ERRMSG *I°m sorry, Dave,";\ Q I'm oy, Dave, | can't do that,
‘1 can’t do that."

displays the following window:

Example of an ASK message: Example Program E
PROMPT "Will you marry me?" @ will waw rarry me?
ASK

o |

displays the following window:

Example of a CONFIRM message:

PROMPT *"Warning: Proceeding with this operation may ";
PROMPT *'be hazardous to your health!"
CONFIRM

displays the following window:
Example Program

& Yw'arhing: Proceeding with this operation may be hazardous ta pour healthl

Cancel |

When to Use Which Command

Use the following guidelines for selecting a message command:

>

If the user is waiting for a specific message as the result of something he did, use
the INFO command. For example, use the INFO command to inform the user that
a command was completed successfully.

If a command from the user cannot be executed because of a condition that will
occurr during normal operation, use the PRINT command. For example, use the
PRINT command to inform the user that a switch cannot be switched because it is
in local mode, or because it is busy.

Page 26

U.P.M.A.C.S. SCL Language Reference Programming Methods

>

If a user is waiting for a message, but the message you display is different from the
one he is waiting for, also use the PRINT command. For example, use the PRINT
command to tell the user that a smart switch switched to a secondary backup
unit instead of the main backup.

If a user is not waiting for a message at all, but the message is about something
that occurs during normal operation, use the PRINT command as well. For exam-
ple, use the PRINT command to tell the user that an air conditioning filter needs to
be replaced.

If an action could not be performed because of a condition that should not occur
during normal operation, inform the user using the ERRMSG command. For exam-
ple, use the ERRMSG command if a command failed because a piece of equip-
ment does not respond, if a configuration option that should be installed is not in-
stalled, if an equipment firmware number is wrong, or if a required file cannot be
found.

If you detect a condition that should be impossible, use the ERRMSG command. For
example, use the ERRMSG command to inform the user that ganged switches have
different positions.

Note: An alarm should be considered a condition that occurs during nor-
mal operation. If a frequency cannot be set because a unit is in alarm, or if
a switch cannot be switched because of an alarm, use the PRINT rather
than the ERRMSG command.

If you need to confirm a user command (display an “are you sure?”’-message),
use the CONFIRM command.

If you need to inform the user about possible consequences of an action, and the
user might change his mind about executing a command due to those conse-
guences, also use the CONFIRM command. For example, use the CONFIRM com-
mand to tell the user that a data rate change on a modem carrying traffic will
cause a loss of carrier.

Anytime you want to give the user a choice to proceed with an operation, or to
abort it, use the CONFIRM command.

If something can be done in two equally valid ways, use the ASK command to let
the user decide. For example, use the ASK command to determine whether a user
wants an HPA automatically to maintain an output power he just entered, or not.

If there is something that you feel the user might want to do in addition to the
command he executed, use the ASK command to determine whether it should be
done. For example, use the ASK command to determine whether the user wants
to remove the RF inhibit from an HPA that he just switched on line.

Message commands are not available within programs for sources, checksums, and
SABuUs response data, programs for SABus commands, or RTS controls.

Page 27

U.P.M.A.C.S. SCL Language Reference Programming Methods

Dialogs

How Dialogs Work
SCL supports fully featured dialogs to allow you to interact with the user.

To display a dialog, you must first construct it using the dialog item commands. SCL ar-
ranges the items from top to bottom in the order you added them. Buttons are placed
on the right of the dialog, also from top to bottom in the order you added them. If you
don’t specify any buttons, SCL adds an OK and a Cancel button for you. Once you have
constructed the dialog you display it using the DIALOG command.

Each dialog item has a variable associated with it. The item gets initialized to the value
that the variable has when you use the DIALOG command, and the variable gets set to
reflect the value the user entered in the item when he presses a button.

Usually, the dialog title will be the title of the program. You can change the title, how-
ever, by using the DLGTITLE command.

You can specify a result variable and a callback line number in the DIALOG command to
determine the button the user pressed, and to check the values the user entered for va-
lidity before the dialog is closed. If the user entered invalid data, you can tell him so using
a message command, and you can take him back to the item where invalid data was
entered.

Once you use the DIALOG command, the dialog is deleted, and any new dialog com-
mands you use will be applied to a new dialog.

Dialog Items

The following commands create items in a dialog. The items are placed in the dialog,
from top to bottom, in the same order as you add them.

» To add explanatory text, use the DLGTEXT command.

» To place a horizontal line between items to group them, use the DLGLINE com-
mand

» To add a text entry field, use the STREDIT, STREDITO, PWDEDIT, or PWDEDITO
command
» To add an entry field for numbers, use the NUMEDIT or INTEDIT command

» To add a check box, use the CHKBOX command

> To add a list box, use the LIST, LISTW, LISTO, LISTWO, SLIST, SLISTW, SLISTO, or
SLISTWO command

> To add items to a list box, use the LITEM command

» To add a group of radio buttons, use the RDGRP or RDGRPO command

» To add radio buttons to a group, use the RDBTN command

Page 28

U.P.M.A.C.S. SCL Language Reference Programming Methods

» To add a popup menu (combo box) use the MENU or MENUO command

> To add items to a menu, use the MITEM command

All items except for DLGTEXT and DLGLINE items have a variable associated with it. Ini-
tially, the item is updated to reflect the value of the variable. When the user presses a
button, the variable’s value is set to reflect the user entry.

If the user presses the Cancel button, however, the variable values are reverted to their
original values and all user entry is ignored.

Dialog Buttons

The following commands create buttons in a dialog. The buttons are placed along the
right of the dialog, from top to bottom, in the same order as you add them.

» To add a button to the buttons on the right of the dialog, use the BUTTON or
BUTTONO command

» To add a cancel button use the CANCELBTN command

Each button has a button number. The cancel button always has button number 0, all
other buttons are humbered from one up, in the order you add them. You can deter-
mine which button the user pressed by the button number.

Buttons you add using the BUTTONO and CANCELBTN commands are always enabled and
can always be pressed. Buttons you add using the BUTTON command are disabled and
cannot be pressed if:

» any entry field created using the STREDIT, PWDEDIT, NUMEDIT, or INTEDIT com-
mand has no text in it

» any list box created using the LIST, LISTW, SLIST or SLISTW command has no se-
lection

» any radio group created using the RDGRP command has no button pressed

» any menu created using the MENU command has no selection

Items created using the STREDITO, PWDEDITO, LISTO, LISTWO, SLISTO, SLISTWO, RDGRPO,
and MENUO command do not affect any buttons.

If you do not specify any buttons, SCL will automatically add an OK and a Cancel but-
ton. The OK button will behave as if it was added using the BUTTON command, and will
only be available under the conditions stated above.

The Result Variable

The DIALOG command allows you to specify a result variable. If you specify a result vari-
able, the variable will contain the button number of the button the user pressed to close
the dialog.

If you do not specify a result variable, the program will be aborted if the user presses the
cancel button. If the user presses any other button, the program will continue. If you
have more than one button, there is no way of telling which button the user pressed
without specifying a result variable.

Page 29

U.P.M.A.C.S. SCL Language Reference Programming Methods

Caution: Please be aware that even if your dialog has no Cancel button, the re-
sult variable may be 0. The result variable is always 0 if the program was invoked
from a remote computer, and communications are lost while the dialog is up, or if
the program is called while the station is being closed or U.P.M.A.C.S. is quitting.
You should always provide proper handling for a result variable value of 0.

The Button Callback
If you specify a result variable, you can also specify a button callback line number.

Whenever the user presses a button other than the Cancel button, SCL jumps to the line
number as if it encountered a GOSUB command. You can look at the result variable to
see what button the user pressed. All the variables associated with the items are up-
dated to reflect the user’s entries.

You return from the button callback using the RETURN command.

If you want the dialog to be closed when you return, do not modify the result variable. If
you want the dialog to stay up, set the result variable to 0. If you set the result variable to
any other value but zero, the dialog will be closed, and the result variable will retain that
value when the program continues after the DIALOG statement.

If you set the result variable to 0, all dialog items will be updated to reflect any changes
you made in their variables, and the dialog will stay up. The button callback will be
called again once the user presses another button.

The button callback is not called if the user presses the Cancel button.

You can use the callback in two ways:

» Perform validation of data the user entered
If you find that the user entered values which are acceptable, just use the RETURN com-
mand. The dialog will be closed.

If you find that the user entered a value that is not acceptable, pop up a message using
the PRINT command, informing the user of which field is not acceptable, and why. Then
use the DLGERROR command to highlight the problem field in the dialog, set the result
variable to 0, and use the RETURN command. The dialog will stay up, and the user can try
to enter valid values.

= Perform an action that does not close the dialog
If you want to have a button in your dialog that performs an action but does not close
the dialog, you can implement it using the button callback.

Simply set the result variable to 0 if the special button was pressed, and perform any ac-
tions that the button press is supposed to produce. You can modify the variables associ-
ated with the dialog items to change the content of the dialog, use the SETLITEM,
ADDLITEM, DELLITEM and CLRLITEMS to change the content of lists, use the SETMITEM,
ADDMITEM, DELMITEM and CLRMITEMS to change the content of menus, or perform any
other actions that might be necessary. Then use the RETURN command to go back to
dialog processing.

You can use the LITEM$, LITEMEXISTS%, MAXLITEM, and COUNTLITEMS commands to
get information about list items. Use the MITEM$, MITEMEXISTS%, MAXMITEM, and
COUNTMITEMS to get information about menu items.

You can construct and display another dialog inside the button callback.

Page 30

U.P.M.A.C.S. SCL Language Reference Programming Methods

Dialogs are not available within programs for sources, checksums, and SABus response
data, programs for SABus commands, or RTS controls.

Time and Date

SCL supports time and date values. These values are simply nhumbers, expressed as the
number of seconds elapsed since midnight, January 1st, 1901. You can use these num-
bers like any other numbers, adding, subtracting them, passing them as function pa-
rameters and storing them in numerical variables.

To get the current local time value, use the reserved variable TIME.

To calculate an arbitrary time value from month, day, year, hours, minutes, and seconds,
use the MKTIME function.

To calculate a time difference, simply subtract two time values. Since the time values
represent seconds since the beginning of the 20th century, this will give you an interval in
seconds.

You can convert between local time and Greenwich mean time using the GMT and
LCTIME functions.

You can write a time value to a string using the TIME$ function. You can write a time in-
terval (a number of seconds) to a string using the INTVMINS$ and INTVHRS$ functions.

There are also functions that allow you to extract the month, day, year, hours, minutes,
seconds, or day of the week from a time value. These functions are listed in the Function
Reference under Time and date functions.

File Input and Output and Network Connections

File Input and Output

You can access files on your file system from within SCL programs. When you open a file,
you must assign a file number to it. Each file number must be a unique integer between 0
and 4,294,967,295. No two open files can have the same file number.

To open and close a file, use the OPEN and CLOSE commands.

Files can be opened an text files or binary files. If you open a file as a text file, SCL will
translate CR+LF pairs to CRs when reading from the file, and vice-versa when writing to it.

Each file has a current file position maintained by the operating system. This is the place
within the file from which the next read or write operation will begin. You can get and set
the file position using the FPOS function and the SETFPOS command. Every time you read
or write a certain number of bytes, the file position is advanced to the end of the string
read or written.

You can use the FLEN function to determine the length of a file.

You can use the LIMITFLEN command to keep a file from growing continually until it fills
all available disk space.

Caution: The file position and file length are represented in bytes from the begin-
ning of the file, not characters. If you opened the file as a text file, CR+LF pairs will

Page 31

U.P.M.A.C.S. SCL Language Reference Programming Methods

be counted as two bytes, but only read as one character. This means that the file
position and length in text files do not reflect the number of characters read, or
the number of characters contained in the file.

To write and read to and from a file, use the PRINT# and INPUT# commands.

All open files are automatically closed when the program ends.

Network Connections

You can make TCP/IP network connections from within SCL programs. Network connec-
tions are treated the same as files: each network connection must have a file number,
just like a file.

To open a connection with a TCP/IP server, use the CONNECT command. To disconnect,
use the CLOSE command. Use the PRINT# and INPUT# commands to send and receive
data.

SCL does not have any built-in knowledge about the protocols used by the server you
are connecting to. You must implement the protocol yourself using the PRINT# and
INPUT# commands. The CONNECT command is designed to communicate with servers
that were specifically designed to communicate with SCL programs. Although it is theo-
retically possible to connect, say, to an FTP server using an SCL program, it is fairlly com-
plicated and requires a knowledge of the details of the FTP protocol.

You cannot use the FPOS function, the SETFPOS command, or the LIMITFLEN command
with network connections, since network connections have neither a length nor a posi-
tion.

File input and output and network connections are not available within programs for
sources, checksums, and SABuUs response data.

Decoding and Encoding Data

You can define one or more data decoders and encoders for an SCL program in the
New Program dialog. These decoders and encoders are used to construct or interpret
SCL strings using special commands and functions.

A decoder tells the command or function how to parse a numerical, Boolean, or string
value from a data string. An encoder tells the command or function how to write a nu-
merical, Boolean, or string value to a data string.

Each decoder and each encoder has a decoder or encoder number, which is used to
tell the function or command which decoder or encoder to use.

Decoding or Encoding a Single Value

You can use an encoder to encode a single value using the ENCODE$ function. To de-
code a single value from a string, use the DECODE, DECODES$, or DECODE% functions. These
functions look for a value at the beginning of the string, and they ignore any characters
that appear after the value.

You can also decode a string using a decoding you create on the fly out of three regular
expressions using the DECODEREGEX$ function.

Page 32

U.P.M.A.C.S. SCL Language Reference Programming Methods

Decoding a Sequence of Values from a String

If a string contains more than one value, you can use the PARSEDEC and PARSEREGEX
commands to parse the values. These functions take a numerical variable that holds the
position of the value you wish to parse. After the command has decoded the value, the
command will set the position variable to the first position after the value it found. This
allows you to then parse the next value in the string using the same position variable.

The first character in a string is position 1. You do not need to set the position variable to 1
to start parsing at the beginning of the string, however. The parsing functions start parsing
at the first character if the position is 0.

To start parsing a string, set the position variable to 0 or 1. Then, call PARSEDEC or
PARSEREGEX repeatedly with the same position variable to parse all the values. Since a
numerical variable is 0 when it is first used, you only need to set the position variable
manually if you have used it before.

To parse three numbers from data_string$ using decoders number 1, 2, and 3, use the
following code:

position=0

PARSEDEC data_string$,1,parsed_numberl,position
PARSEDEC data_string$,2,parsed_number2,position
PARSEDEC data_string$,3,parsed_number3,position

You can add a number to the position to skip a fixed number of data bytes. If you know
that there are exactly 2 bytes between the numbers, you can use the following code:

PARSEDEC data_string$,1,parsed_numberl,position
position=position+2
PARSEDEC data_string$,2,parsed_number2,position
position=position+2
PARSEDEC data_string$,3,parsed_number3,position

Similarly, you can skip the first 10 characters in a string by setting the position variable to
11 initially.

Use the SKIPDEC, and SKIPREGEX commands to skip extra data that appears between
the values. If there must be a comma between the numbers, use the following code:

PARSEDEC data_string$,1,parsed_numberl,position
SKIPREGEX data_string$,",", position
PARSEDEC data_string$, 2,parsed_number2,position
SKIPREGEX data_string$,™,", position
PARSEDEC data_string$,3,parsed_number3,position

To check if the entire string has been parsed, check if position=LEN(data_string$).

Encoding a Sequence of Values to a String

To write a series of values to the string, use the APPENDSTR, APPENDCSTR, APPENDHEX, and
APPENDENC commands. Each of these commands append data to the content of a
string variable.

Page 33

U.P.M.A.C.S. SCL Language Reference Programming Methods

The APPENDSTR, APPENDCSTR, and APPENDHEX commands to append a fixed string to the
variable. The APPENDENC command uses an encoding to append a numerical, string, or
Boolean value to the variable.

To construct a data string, start with a string variable that contains no data. Use the ap-
pending commands to add values to the string variable. To write three nhumbers to a
string using encoders 1, 2, and 3, use the following code:

data_string$=
APPENDENC data_string$,1,numberl
APPENDENC data_string$,2,number2
APPENDENC data_string$,3,number3

To add commas between the numbers, use the following code:

APPENDENC data_string$,1,numberl
APPENDSTR data_string$,","
APPENDENC data_string$,2,number2
APPENDSTR data_string$,","
APPENDENC data_string$,3,number3

You can specify more than one value for an append command. To encode three num-
bers, one after the other, all using encoding number one, use the following:

APPENDENC data_string$,1,numberl,number2,number3

Serial Communication

Sending Commands

SCL allows you to send a command defined in a device driver to a serial port. Use the
SENDCMD command to send the command. You must specify the port, the device, the
command, and all of its parameters when you use SENDCMD.

U.P.M.A.C.S. will send the command to the port, and wait for a response, if required. If
the command times out or the device returns an error, and the device driver specifies a
number of retries for timeouts or for the error returned, SENDCMD wiill try to resend the
command the specified number of times.

Use the DRVSUCCESS%, DRVTIMEOUT%, and DRVERROR% reserved variables to determine if
the command was sent successfully. Use the DRVDATA$ reserved variable or the
DRVNDATAS function to access the data returned by the equipment. Use the DRVERROR
and DRVERROR$ reserved variables, or the DRVNERROR, and DRVNERRORS functions to ac-
cess the error codes returned by the equipment.

Any registers that get their data from the command’s response will be updated when
you send a command.

Caution: SCL will send commands regardless of whether the device has been
properly initialized or not. If it is important that the device has been initialized, use
the DRVREADY% function to determine if the driver is ready.

Page 34

U.P.M.A.C.S. SCL Language Reference Programming Methods

If you want to send arbitrary data that is not part of a serial device command to a serial
port, you can use the SENDSTR and SENDBIN commands. You can also use the SENDSTR
and SENDBIN commands to send custom commands to devices that use legacy device
drivers. Use the SENDREPLY command to send pre-defined replies to a device that uses a
legacy device driver.

Synchronizing Port Access

Since U.P.M.A.C.S. is a fully multitasking system, any number of SCL programs can run at
the same time, while all ports are still being polled. It will usually be necessary to make
sure that no other SCL programs can access the serial port or ports that a program
needs, and that no polls are sent while the program is using the port.

For single commandes, this synchronization is automatic.

If you need to send more than one command, and want to ensure that you are not inter-
rupted, you can “grab” one or more ports using the GRAB command. This will give you
exclusive access to the ports until the program ends, or you release them using the
RELEASE command.

To avoid deadlock between SCL programs, you cannot grab additional ports when you
already have exclusive access to other ports. You must release the ports you have
grabbed before you can grab any additional ports. For the same reason you cannot
access ports you have not grabbed, if you have already grabbed others.

If a program callls a child program using the CALL or DRVCALL commands, the child wiill
have exclusive access to any ports the parent has grabbed. Child programs can only
grab ports themselves if the parent program does not have any grabbed ports. Child
programs cannot release ports the parent has grabbed.

Serial communication is not available within programs for sources, checksums, and SABus
response data.

Programs for Sources, Checksums, and SABus Response Data

SCL programs are used in processor and summary serial data object and register sources
to determine the value of the data object or register. Processor sources use a section ex-
tracted from a response, whereas summary sources use the values of other ob-
jects/registers. SCL programs are also used to do custom checksum calculations, and to
specify the data of SABus processor response data objects.

You can access the tag of the data object or register that triggered the program using
the TRIGGERS$ reserved variable. For programs for serial data object sources, you can use
the TRIGGERPRM, TRIGGERPRM$, and TRIGGERPRM% functions to access the data object’s
parameters. Use TRIGGERPRM for digital and analog parameters, TRIGGERPRM$ for string
parameters, and TRIGGERPRM% for bistate parameters.

Accessing the Data (Processor Sources and Checksums Only)

The response data that should be used for the value of the data object or register (proc-
essor sources), or the command or response data whose checksum should be calcu-
lated, can be accessed in two ways. The reserved string variable BUFFER$ can be used
to access the entire data as a string; the BUFFER function allows access to single data
bytes as numbers.

Page 35

U.P.M.A.C.S. SCL Language Reference Programming Methods

Specifying the Data Object/Register Value or Checksum

You specify the resulting data, value, or checksum by setting a variable with a specific
name. The result variable is a normal user variable and can be used like any other user
variable. The names of the special variables are not reserved for use in programs for
sources, checksums, and SABuUs response data. You can use variables with the same
name in any type of program.

The names of the result variables for the different types of programs are listed below

= Checksums
For checksum programs, you must write the checksum to the variable RESULT.

» Serial Data Objects and Registers
For processor and summary sources, a special variable must be set to specify the value
that the register should assume.

Object/Register Variable name Variable type
type

bistate register RESULT% Boolean
digital register RESULT numerical
analog register RESULT, GLRESULT numerical
string register RESULTS$ string

If you do not use the variable listed for the type, the object or register will go into its error
state, (except for the GLRESULT variable, which does not need to be set). If you encoun-
ter an error parsing the data, do not use the result variable, so that an error will be
flagged.

A bistate object or register will go into its on/alarm state if you set RESULT% to true, or into
its off/alarm clear state if you set it to false. Registers with a response time will only assume
the specified state after the response time has elapsed.

A digital object or register will assume the value specified in RESULT only if it is an integer
between 0 and $FFFFFFFF. Otherwise, it will go into its error state.

An analog object or register will assume the value specified in RESULT. You can specify
the greater / less status of the object or register using the GLRESULT numerical variable.
Set GLRESULT to a number greater than 0 for “greater than”, a number less than 0 for
“less than”, and to 0 for a normal value (equal). You do not need to use the GLRESULT
variable. If you do not use it, it will be assumed to be 0.

If an analog object or register has a size of more than one value, RESULT and GLRESULT
must be 1-dimensional arrays rather than regular user variables. The values with indices 1,
2, 3, etc. wil take the values of RESULT[1], RESULT[2], RESULT[3], etc. and
GLRESULT[1], GLRESULT[2], GLRESULT[3], etc.. The index of the first value is 1. If an
analog object or register has a size of one value, you can either use regular variables, or
use arrays and specify the value in RESULT[1] and GLRESULT[1].

A string object or register will also simply assume the value specified in RESULTS.

You can also (auto-)mask the target object or register by setting the special variable
MASKRESULT% to true. If you set MASKRESULT% to true, the other result variables will be ig-
nored.

Page 36

U.P.M.A.C.S. SCL Language Reference Programming Methods

= SABus Response Data Objects

For SABus response data, you must write the data for the response section to the variable
RESULTS$. If you do not set the variable, or if you set it to a value that contains non-
printable characters (ASCIl $00-$1F and $7F-$FF), the response data section will be
empty.

Restrictions on Functions and Commands

Programs for sources and SABus response data, and all programs called by them using
the CALL or DRVCALL command, are limited to 500 instructions, unless otherwise specified
in the program'’s properties.

There are many commands and functions that you may not use in programs for sources,
checksums, or SABus response data:

User message commands

Dialog commands

File input and output and network connection commands and functions
Serial communications commands

Serial communications functions for accessing the response data or status

VvV V V V VYV V

Commands that modify registers or serial data objects or their values, or the
SETPARAM command

Logging commands

RTS and SABuUs response commands

The STOPNET and STARTNET commands

The CALLRMT, RUN, DRVRUN, RUNRMT, and LAUNCH commands
The DELAY command

YV V V V V

Even though you cannot use register and data object commands, you can use register
and data object functions. You can also use the CALL and DRVCALL commands.

Check the description for the individual commands to see whether a command can be
used in programs for sources, checksums, or SABus response data.

Programs for SABus Commands

Programs are used in SABus commands to take any actions necessary as a consequence
of the command, and to return a reply or error message to the remote system.

The variables you specified in variable command parameters will be set to the values of
the parsed from the SABus command packet, rather than their default values. This allows
you to access the parameter values.

To return a reply to the remote system, use the SABUSREPLY command. To send an error
message, use the SABUSERROR command. The uplink port that received the command
that triggered the program will be locked and no new SABus requests processed on it
until you use either the SABUSREPLY or the SABUSERROR command. Using either com-
mand will release the uplink port, and further request from the remote system will be then

Page 37

U.P.M.A.C.S. SCL Language Reference Programming Methods

processed. You can only send one reply or error message to any command, a second
SABUSREPLY or SABUSERROR will generate an error. If you do not use either the
SABUSREPLY or the SABUSERROR command, the uplink port will be released when your
program exits.

You should always use exactly one SABUSREPLY command or one SABUSERROR com-
mand, as every SABus request should have exactly one reply. Although it is possible to
end the program without having used either command, this is bad practice, because
the request that triggered the program will then not generate a reply.

The uplink port error messages built into U.P.M.A.C.S. all use three capital letters as an er-
ror code followed by the parameters, if applicable. For consistency’s sake, you should
use the same format for your own error messages. Whenever applicable, you should
send error codes of the built-in error messages. E. g., if parameter 4 has an illegal value,
use the following code to send the error response:

SABUSERROR ''PRM04"

You should always send a reply or error message as early in the program as possible. This
will ensure that the uplink port does not stay blocked for an unnecessary amount of time,
and that there is no excessive delay between an SABus command and its response.

You can access the name of the SABus command that triggered the control using the
TRIGGERS reserved variable.

Restrictions on Functions and Commands

There are some commands and functions that you may not use in programs for SABus
commands:

» User message commands
» Dialog commands

» RTS commands

Check the description for the individual commands to see whether a command can be
used in programs for sources, checksums, or SABus response data.

Device Driver Programs

You can define SCL programs inside device drivers. These programs can be used to cal-
culate checksums, or for processor and summary sources of serial device data objects.
Device driver programs can also be called be invoked programs using the DRVCALL and
DRVRUN commands.

Some special considerations apply when accessing station objects from a device driver
program:

= Registers and legacy parameters

Device driver programs cannot access registers or legacy parameters. This means that
commands and functions that access registers or legacy parameters cannot be used in
device driver programs.

Page 38

U.P.M.A.C.S. SCL Language Reference Programming Methods

= Serial ports and devices
Device driver programs can only access their own device driver and serial port. Wher-
ever you have to specify a serial port or serial device in a command or function, you
must use the empty string **** for the tag of the port or device. The right port and device
will be used automatically.

= SCL programs
If you use the CALL or RUN command, a program from the same device driver will be in-
voked, rather than a normal program.

You can use the DRVPRM, DRVPRM$, and DRVPRM% functions to access the device driver
parameters. Use DRVPRM for digital and analog parameters, DRVPRM$ for string parame-
ters, and DRVPRM% for bistate parameters.

Invoking SCL Programs From Within an SCL Program

You can call another SCL program from within an SCL program. This can be done in two
ways.

You can invoke another program as an independent program using the RUN and DRVRUN
command. The command does not wait until the invoked program finishes. You can
schedule programs to be executed at a later time using the RUN or RUNDRV command.

You can also call a program as a child program using the CALL or DRVCALL command.
The command does not return until the called program has finished, and the called pro-
gram inherits certain properties from its parent, including message and dialog box titles,
and grabbed serial ports.

Child programs can access variables of their parent programs using the SETPVAR com-
mand and the PVAR, PVARS$, and PVAR% functions.

CALL and RUN are used to run normal SCL programs defined outside a device driver.
DRVCALL and DRVRUN are used to run device driver programs. If you use CALL or RUN
within a device driver program, however, a program from the same driver will be exe-
cuted, not a normal program.

For both independent and child programs, you can specify program arguments for the
invoked program. The arguments consist of variable-value pairs.

Executing Programs On a Remote Computer

You can use the CALLRMT and RUNRMT to execute programs on a remote computer that
is also running U.P.M.A.C.S.. The program must be a program defined in the station file of
the remote computer, not the local computer.

The remote program will run on the remote computer, and use the registers, serial port,
log files, etc. of the remote computer. Only user messages and dialogs will be shown on
the local computer.

You can only execute programs if the remote computer has insecure remote control en-
abled. See Network Security in the U.P.M.A.C.S. Operator’s Manual for details.

The CALLRMT, RUN, DRVRUN, and RUNRMT commands are not available within programs for
sources, checksums, and SABus response data.

Page 39

U.P.M.A.C.S. SCL Language Reference Programming Methods

RTS Controls

RTS controls are specialized SCL programs that are executed by another application via
the network. The application provides a number of string parameters, called RTS parame-
ters. The control can access the parameters using the RTSPRM$ function.

The RTS control can send two kinds of replies to the application that triggered it:

» Tosend an information message, use the RTSSEND command.

» Tosend an error message, use the RTSERROR command.

RTS controls do not need to be specially marked, nor do they have a special format. If
RTS controls are enabled in the network security setting of the U.P.M.A.C.S. Operate Sys-
tem, the remote application can execute any SCL program as an RTS control.

For information on how to write applications that use the RTS protocol, contact UPMACS
Communications, inc.

Restrictions on Functions and Commands

There are some commands and functions that you may not use in RTS controls:

» User message commands
» Dialog commands

» SABus commands

Check the description for the individual commands to see whether a command can be
used in programs for sources, checksums, or SABus response data.

Page 40

U.P.M.A.C.S. SCL Language Reference Reserved Variable Reference

RESERVED VARIABLE REFERENCE

Serial Communication Reserved Variables

B The DRVSUCCESS% Reserved Variable

Determines whether a valid response was received to the last command sent.

Syntax:
DRVSUCCESS%

DRVSUCCESS% is true if a valid response was received to the last command sent using the
SENDCMD command. DRVSUCCESSY% is always true for commands that do not expect a
response, or if you sent data to the serial port using a command other than SENDCMD.

If DRVSUCCESS% is true, use the DRVDATA$ reserved variable or the DRVNDATA$ function to
retrieve the response data.

If DRVSUCCESSY% is false, use the DRVTIMEOUT% and DRVERRORY% reserved variables to de-
termine what went wrong.

Note: DRVSUCCESS% can also be used to determine if a valid response was re-
turned to a custom command sent to a device that uses a legacy device driver
using SENDSTR or SENDBIN.

This reserved variable is not available within programs for sources, checksums, and SABus
response data.

B The DRVTIMEOUT% Reserved Variable

Determines whether the last command sent timed out.

Syntax:
DRVTIMEOUT%

DRVTIMEOUT% is true if a timeout occurred waiting for the response to the last command
sent using the SENDCMD command. DRVTIMEOUTY% is always false for commands that do
not expect a response, or if you sent data to the serial port using a command other than
SENDCMD.

Note: DRVSUCCESS% can also be used to determine if a custom command sent to
a device that uses a legacy device driver using SENDSTR or SENDBIN timed out.

This reserved variable is not available within programs for sources, checksums, and SABus
response data.

Page 41

U.P.M.A.C.S. SCL Language Reference Reserved Variable Reference

B The DRVERROR% Reserved Variable

Determines whether an error response was received to the last command sent.

Syntax:

DRVERROR%

DRVSUCCESS% is true if an error response was received to the last command sent using
the SENDCMD command. DRVERRORY% is always false for commands that do not expect a
response, or for commands that do not have an error response defined. DRVERROR% is
also false if you sent data to the serial port using a command other than SENDCMD.

If DRVERRORY% is true, use the DRVERROR and DRVERROR$ reserved variables and the
DRVNERROR and DRVNERROR$ functions the to retrieve the error codes.

Note: DRVSUCCESS% can also be used to determine if an error response was re-
turned to a custom command sent to a device that uses a legacy device driver
using SENDSTR or SENDBIN.

This reserved variable is not available within programs for sources, checksums, and SABus
response data.

B The DRVDATAS$ Reserved Variable

Contains the data of the first response data element of the last command sent.

Syntax:

DRVDATAS$

DRVDATAS$ contains the content of the first response data element of the response to the
last command sent using the SENDCMD command. DRVDATAS is an empty string if the
command has no response, if its response has no response data response elements, or if
no valid response was received. Use the DRVSUCCESS% reserved variable to determine if
a valid response was received.

DRVDATAS is also an empty string if you sent data to the serial port using a command
other than SENDCMD.

Use the DRVNDATAS$ function to retrieve the data of response data elements other than
the first one.

Note: DRVDATA$ can also be used to retrieve the data (without the prefix and suf-
fix) of the response to a command sent to a device that uses a legacy device
driver using SENDCMD, SENDSTR, or SENDBIN.

This reserved variable is not available within programs for sources, checksums, and SABus
response data.

B The DRVERROR Reserved Variable

Contains the main error code the device returned to the last command sent.

Page 42

U.P.M.A.C.S. SCL Language Reference Reserved Variable Reference

Syntax:

DRVERROR

DRVERROR contains the main error code returned by the device to the last command
sent using the SENDCMD command. DRVERROR is O if a valid response was received or the
command timed out, if the command has no main error code, or if the main error code
is a string error code. Use the DRVERROR% reserved variable to determine if an error re-
sponse was received.

DRVERROR is also 0 if you sent data to the serial port using a command other than
SENDCMD.

Use the DRVERRORS reserved variable to retrieve the main error code if it is a string. Use
the DRVNERROR function to retrieve numerical error codes other than the main error
code.

This reserved variable is not available within programs for sources, checksums, and SABus
response data.

B The DRVERRORS$ Reserved Variable

Contains the main error code the device returned to the last command sent.

Syntax:

DRVERROR$

DRVERROR$ contains the main error code returned by the device to the last command
sent using the SENDCMD command. DRVERRORS is an empty string if a valid response was
received or the command timed out, if the command has no main error code, or if the
main error code is a humerical error code. Use the DRVERRORY% reserved variable to de-
termine if an error response was received. DRVERRORS$ is also an empty string if you sent
data to the serial port using a command other than SENDCMD.

Use the DRVERROR reserved variable to retrieve the main error code if it is numerical. Use
the DRVNERRORS$ function to retrieve string error codes other than the main error code.

Note: DRVERROR$ can also be used to retrieve the error response to a command
sent to a device that uses a legacy device driver using SENDCMD, SENDSTR, or
SENDBIN.

This reserved variable is not available within programs for sources, checksums, and SABus
response data.

Miscellaneous Reserved Variables

B The PRGNAME$ Reserved Variable

Contains the name of the SCL program being executed.

Syntax:
PRGNAME$

Page 43

U.P.M.A.C.S. SCL Language Reference Reserved Variable Reference

PRGNAME$ contains the name (not the tag) of the SCL program that is currently bein exe-
cuted. If the program is a child program executed using the CALL, DRVCALL, or CALLRMT
command, the name of the parent program is used.

B The TIME Reserved Variable

Contains the current time.

Syntax:
TIME

TIME contains the current time expressed as the number of seconds elapsed since mid-
night, January 1st, 1901.

B The USR$ Reserved Variable

Contains the name of the current user.

Syntax:

USR$

USR$ contains the name of the user who is currently logged on to the local station. Use
USRLVL to determine the current user’s clearance level, and USRPRV% to determine if the
current user has privileges to parform a certain action.

B The USRLVL Reserved Variable

Contains the clearance of the current user.

Syntax:
USRLVL

USRLVL contains the clearance of the user who is currently logged on to the local sta-
tion. The levels have the following meaning:

Value Clearance

0 there is no one signed on, or the current user has no
clearance

1 the current user is an operator

2 the current user is a supervisor

3 the current user is an administrator

Use USRPRVY% to determine if the current user has privileges to perform a certain action.

B The NETUP% Reserved Variable

Determines whether remote connections are enabled.

Syntax:
NETUP%

Page 44

U.P.M.A.C.S. SCL Language Reference Reserved Variable Reference

NETUP% is false if remote connections have been disabled using the STOPNET command.
Use STARTNET to re-enable remote connections. If NETUP% is false, no remote connec-
tions can be initiated from other computers, including connections to the local station,
insecure remote control connections, and network register source connections.

NETUP% only checks whether networking has been disabled using the STOPNET com-
mand, it does not check whether remote connections are enabled in the network secu-
rity settings. If remote connections have not been disabled using STOPNET, NETUP% will be
true even if networking has been disabled in the network security settings.

Special Purpose Reserved Variables

B The BUFFERS$ Reserved Variable

Contains the data in the data buffer.

Syntax:
BUFFER$

BUFFERS$ contains the data that is to be evaluated. Use the BUFFER function to retrieve
single bytes from within the buffer.

This reserved variable is only available within programs for processor sources or check-
sums.

B The TRIGGER$ Reserved Variable

Contains the tag of the object that triggered this program.

Syntax:
TRIGGER$

TRIGGER$ contains the tag of the following object:

Program type Object

Automatic control Register

Device control Serial port

Serial data object Data object

source

Register source Register

SABus command Command ob-
ject

To retrieve the tag of a device for a device of a device control, use the TRIGGERDRV$
reserved variable. To retrieve the parameters of the serial data object for programs for
data object sources, use the TRIGGERPRM, TRIGGERPRM$, and TRIGGERPRM% reserved
variables.

Page 45

U.P.M.A.C.S. SCL Language Reference Reserved Variable Reference

Note: For message controls of devices that use legacy device drivers, you can
use the TRIGGERMSG$ reserved variable to retrieve the tag of the message that
triggered the control.

This reserved variable is only available within automatic and device controls, programs
for processor and summary sources, and programs for SABus commands.

B The TRIGGERDRV$ Reserved Variable

Contains the tag of the device that triggered this device control.

Syntax:
TRIGGERDRV$

TRIGGERDRV$ contains the tag of the device that triggered a device control. To retrieve
the tag of the device’s serial port, use the TRIGGERS reserved variable.

Note: For message controls of devices that use legacy device drivers, you can
use the TRIGGERMSG$ reserved variable to retrieve the tag of the message that
triggered the control.

This reserved variable is only available within device controls.

Legacy Object Reserved Variables

B The TRIGGERMSG$ Reserved Variable

Contains the tag of the legacy device driver message that triggered this device control.

Syntax:
TR1GGERMSG$

TRIGGERMSG$ contains the tag of the message that triggered a device control. To re-
trieve the tag of the device use the TRIGGERDRV$ reserved variable. To retrieve the tag
of the device’s serial port, use the TRIGGERS reserved variable.

This reserved variable is only available within a legacy device’s message control.

Page 46

U.P.M.A.C.S. SCL Language Reference

Function Reference

FUNCTION REFERENCE

Mathematical Functions

B The ABS Function

Calculates the absolute value of a number.

Syntax:
ABS(n)

Parameters:
n: the number of which to calculate the absolute value

B The SQRT Function

Calculates the square root of a number.

Syntax:
SQRT(Nn)

Parameters:.
n: the number

If n is negative, SQRT generates an error.

B The SIN Function

Calculates the sine of an angle.

Syntax:
SIN(angle)

Parameters:
angle: the angle, in radians

B The COS Function

Calculates the cosine of an angle.

Syntax:
COS(angle)

Parameters:
angle: the angle, in radians

Page 47

U.P.M.A.C.S. SCL Language Reference

Function Reference

B The TAN Function

Calculates the tangent of an angle.

Syntax:
TAN(angle)

Parameters:
angle: the angle, in radians

If angle is an odd multiple of /5 (*/5, 3"/2, 5“/2, /5, '3“/2, etc.), TAN generates an error.

B The EXP Function

Calculates a power of e.

Syntax:
EXP(exponent)

Parameters:
exponent: the exponent to which to raise e

B The LN Function

Calculates the natural logarithm of a number.

Syntax:
LN(Nn)

Parameters:
n: the number

If n is negative or zero, LN generates an error.

B The LOG2 Function

Calculates the logarithm base 2 of a number.

Syntax:
LOG2(n)

Parameters:
n: the number

If n is negative or zero, LOG2 generates an error.

B The LOG10 Function

Calculates the logarithm base 10 of a number.

Page 48

U.P.M.A.C.S. SCL Language Reference Function Reference

Syntax:
LOG10(n)

Parameters:
n: the number

If n is negative or zero, LOG10 generates an error.

B The MOD Function

Calculates the modulus of a number.

Syntax:
MOD(n,order)

Parameters:
n: the number
order: the order of the modulus (the divisor)

The sign of the modulus is always the same as that of order.
If order is zero, MOD generates an error.
Note for C Programmers

Definition of the modulus

The modulus of order o of a humber n is a number m such that there exists an integer i
wheren=o-i+mand | m|]<]ol.

Note: Technically, the modulus operator is only defined for integral n and positive
integral orders. Since extending the definition of a modulus to real arguments
poses no difficulties as long as the order is non-zero, the MOD function allows real
arguments, and negative orders.

Note for C Programmers: The ANSI C library function fmod does not calculate the
modulus of a number, but the remainder of a division. The sign of the remainder is
defined to be the same as that of the number, whereas the sign of the modulus is
defined to be the same as that of the divisor. The remainder and modulus will
therefore differ if the sign of the number is not the same as that of the divisor:

number divisor modulus remainder
10 1 1

-10
10
-10

W W W W

2 =il
-2 1
1 -1

Those familiar with LISP with know the difference between the mod and rem func-
tions in that language. The SCL MOD function behaves the same as the LISP mod
function.

Page 49

U.P.M.A.C.S. SCL Language Reference Function Reference

Examples:

MOD(10, 4)

MOD(2.5,0.75)
MOD(5, 1.5)
MOD(-5, 1.5)
MOD(5,-1.5)
MOD(-5,-1.5)

T T [I I T
OQOOOON
agooN

H The RND Function

Rounds a number.

Syntax:
RND(n)

Parameters:.
n: the number to round

| RND(n)-n | is always less than or equal to 0.5, i.e. RND(n) is never more than 0.5 away
from n.

B The RNDDWN Function

Rounds a number down.

Syntax:
RNDDWN(n)

Parameters:
n: the number to round

RNDDWN(n) is always less than or equal to n.

B The RNDUP Function

Rounds a number up.

Syntax:
RNDUP(n)

Parameters:
n: the number to round

RNDUP(n) is always greater than or equal to n.

Page 50

U.P.M.A.C.S. SCL Language Reference Function Reference

String Manipulation Functions

B The LEN Function

Determines the number of characters in a string.

Syntax:
LEN(string$)

Parameters:.
string$: the string

If string$is empty, LEN(string$) is 0.

B The LEFT$ Function

Extracts the leftmost characters of a string.

Syntax:
LEFT$(string$,n)

Parameters:
string$: the source string

n: the number of characters to extract
If nis greater than the length of string$, LEFT$ returns the entire string.

If n is negative or not an integer, LEFT$ reports an error.

B The RIGHT$ Function

Extracts the rightmost characters of a string.

Syntax:
RIGHT$(string$,n)

Parameters:
string$: the source string
n: the number of characters to extract

If nis greater than the length of string$, RIGHT$ returns the entire string.

If nis negative or not an integer, RIGHT$ reports an error.

B The MID$ Function

Extracts an arbitrary substring from a string.

Syntax:
MID$(string$,position,n)

Page 51

U.P.M.A.C.S. SCL Language Reference Function Reference

Parameters:

string$: the source string

position: the position of the substring within the string
n: the number of characters to extract

A position of 1 indicates that the substring begins with the first character of string$.
If position is grater than the length of string$, MID$ returns an empty string.

If there are less than n characters in string$ after position, then MID$ returns all char-
acters in the string from position on.

If position is less than one or not an integer, MID$ generates an error.

If n is negative or not an integer, MID$ generates an error.

B The POS Function

Determines the position of a substring within a string.

Syntax:

POS(string$,sub_string$)
Parameters:

string$: the string to search
sub_string$: the string to search for

POS returns the position of the first occurrence of sub_string$ in string$. A return value
of 1 indicates that sub_string$ is located at the beginning of string$. If sub_string$
is not contained in string$, POS returns -1.

B The REGEXPOS Function

Determines the position of a regular expression within a string.

Syntax:

REGEXPOS(string$,reg_ex$)

Parameters:

string$: the string to search

reg_ex$: the regular expression to search for

POS returns the position of the first occurrence of reg_ex$ in string$. A return value of 1
indicates that reg_ex$ is located at the beginning of string$. If reg_ex$ is not con-
tained in string$, REGEXPOS returns -1.

See Appendix A: Regular Expressions in the Developer’s Manual for details on regular ex-
pressions.

B The REGEXEND Function

Determines the position of the end of regular expression within a string.

Page 52

U.P.M.A.C.S. SCL Language Reference Function Reference

Syntax:

REGEXEND(string$, reg_ex$)

Parameters:

string$: the string to search

reg_ex$: the regular expression to search for

POS returns the position of the first character after the first occurrence of reg_ex$ in
string$. A return value of 3, e.g., indicates that reg_ex$ matches the first two charac-
ters at the beginning of string$. If reg_ex$ is not contained in string$, REGEXPEND re-
turns -1.

See Appendix A: Regular Expressions in the Developer’s Manual for details on regular ex-
pressions.

String Conversion Functions

B The CHR$ Function

Makes a string consisting of a character with a specific character code.

Syntax:
CHR$(code)

Parameters:
code: the one-byte character code

If code is less than 0, CHR$ creates a character whose character code is code +256. This
allows you to use CHR$ to create binary strings containing signed byte values.

If code is not an integer between -128 and 255, CHR$ generates an error.

B The ASCII Function

Determines the character code of the first character in a string.

Syntax:
ASCIl 1 (character$)

Parameters:
character$: the string containing the character

Despite its name, the ASCI I function works for characters with codes greater than 127.

Use ASCI I to extract the first byte of a string containing binary data. ASCI1 always re-
turns a value between 0 and 255. To extract a signed byte value (between -128 and 127)
use the SASCI 1 function.

ASCI1 1 return O if character$ is an empty string.

Page 53

U.P.M.A.C.S. SCL Language Reference Function Reference

B The SASCII Function
Determines the signed byte equivalent of the character code of the first character in a
string.

Syntax:
SASCI I (character$)

Parameters:
character$: the string containing the character

The SASCI 1 function returns negative numbers for characters with codes greater than
127. The value returned is the character code minus 256.

Use SASCI I to extract the first byte of a string containing binary data. SASCI I always re-
turns a value between -128 and 127. To extract an unsigned byte value (between 0 and
255) use the ASCI I function.

SASCI I return O if character$ is an empty string.

B The STR$ Function

Writes out a string representation of a number using the decimal marker specified in the
Regional Settings control panel.

Syntax:

STR$(n)

Parameters:

n: the number to write out

STR$ creates a string using the current language settings in the Regional Settings control
panel. Use this function if you want to display a number to the user or write it to the log. If
you want to use the result string internally only, i.e. if it is intended for a parameter or an-
other SCL program, or if you want to use it in an RTS response, use ISTRS$, FMTS$, or
ENCODES$ instead.

B The ISTR$ Function

Writes out a string representation of a number, always using a period as the decimal
marker.

Syntax:

ISTR$(Nn)

Parameters:

n: the number to write out

ISTRS$ creates a string using a period as the decimal marker, regardless of the current
language settings in the Regional Settings control panel. Use this function if you want to
use the result string internally only, i.e. if it is intended for a parameter or another SCL pro-
gram, or if you want to use it in an RTS response. If you want to display a number to the
user or write it to the log, use STR$ instead.

Page 54

U.P.M.A.C.S. SCL Language Reference Function Reference

If you need more control over the exact format, use FMT$, HEXFMTS$, HEXFMT2$, BINFMTS,
OCTFMT$, or ENCODES$.

B The VAL Function

Extracts a number written out in a string using the decimal marker specified in the Re-
gional Settings control panel.

Syntax:

VAL(string$)

Parameters:

string$: the string that contains the number

VAL ignores any characters in the string that appear after the number.

If string$ does not contain a humber, or if there are characters other than spaces be-
fore the number, VAL returns 0.

VAL recognizes the base prefixes described in Literal Values. Exponents and decimals are
ignored for non-decimal numbers.

VAL interprets a string that is formatted according to the current language settings in the
Regional Settings control panel. Use this function if you want to parse a string input by the
user. If you want to parse a string created using the ISTR$ function or a string received in
an equipment response or RTS parameter, use VAL or DECODE.

B The IVAL Function

Extracts a number written out in a string using a period as the decimal marker.

Syntax:

IVAL(string$)

Parameters:

string$: the string that contains the number

IVAL ighores any characters in the string that appear after the number.

If string$ does not contain a nhumber, or if there are characters other than spaces be-
fore the number, 1VAL returns 0.

IVAL recognizes the base prefixes described in Literal Values. Exponents and decimals
are ignored for non-decimal numbers.

IVAL interprets a string that is formatted using a period as the decimal marker, regardless
of the current language settings in the Regional Settings control panel. Use this function if
you want to parse a string created using the ISTR$ function or a string received in an
equipment response or RTS parameter. If you want to parse a string input by the user, use
VAL instead.

If you need more control over the exact format of the number, use HEXVAL, BINVAL,
OCTVAL, or DECODE.

Page 55

U.P.M.A.C.S. SCL Language Reference Function Reference

B The HEXVAL Function

Extracts a hexadecimal number written out in a string.

Syntax:
HEXVAL(string$)

Parameters:
string$: the string that contains the number

HEXVAL ighores any characters in the string that appear after the number.

If string$ does not contain a hexadecimal number, or if there are characters other
than spaces before the number, HEXVAL returns 0.

HEXVAL recognizes both capital (A-F) and small letters (a-f) as hexadecimal digits. Deci-
mal points and exponents are ignored by HEXVAL.

If you need more control over the exact format of the number, use DECODE.

® The BINVAL Function
Extracts a readable binary number (a series of the characters “1” and “0”) written out in
a string.

Syntax:
BINVAL(string$)

Parameters:
string$: the string that contains the number

BINVAL ignores any characters in the string that appear after the number.

If string$ does not contain a binary number, or if there are characters other than
spaces before the number, BINVAL returns 0.

Decimal points and exponents are not recognized by BINVAL.

If you need more control over the exact format of the number, use DECODE.

B The OCTVAL Function

Extracts an octal number written out in a string.

Syntax:
OCTVAL(string$)

Parameters:
string$: the string that contains the number

OCTVAL ignores any characters in the string that appear after the number.

If string$ does not contain an octal number, or if there are characters other than
spaces before the number, OCTVAL returns 0.

Decimal points and exponents are ignored by OCTVAL.

Page 56

U.P.M.A.C.S. SCL Language Reference Function Reference

If you need more control over the exact format of the number, use DECODE.

B The BCDVAL Function

Extracts a binary coded decimal value from a string.

Syntax:
BCDVAL(string$)

Parameters:
string$: the string that contains the number

BCD stands for binary coded decimal. In binary coded decimal, each
nibble (hex digit) in a byte represents one decimal digit.

A string containing the following four byte values:

$20 $34 $00 $50

represents the number 20340050.

BCDVAL uses all characters in the string. If string$ is an empty string, BCDVAL returns 0.

If you need more control over the exact format of the number, use DECODE.

B The LOHIVAL Function
Extracts an unsigned multi-byte value in low, high byte ordering (most significant byte
last) from a string.

Syntax:
LOHIVAL(string$)

Parameters:
string$: the string that contains the number

LOHIVAL always returns an unsigned value. To extract a signed value, use the SLOHIVAL
function.

LOHIVAL uses all characters in the string. If string$ is an empty string, LOHIVAL returns 0.

If you need more control over the exact format of the number, use DECODE.

B The SLOHIVAL Function
Extracts a signed multi-byte value in low, high byte ordering (most significant byte last)
from a string.

Syntax:
SLOHIVAL(string$)

Parameters:
string$: the string that contains the number

Page 57

U.P.M.A.C.S. SCL Language Reference Function Reference

SLOHIVAL returns a negative value if the most significant bit is 1. To extract an unsigned
value, use the LOHIVAL function.

SLOHIVAL uses all characters in the string. If string$ is an empty string, SLOHIVAL returns
0.

If you need more control over the exact format of the number, use DECODE.

B The HILOVAL Function
Extracts an unsigned multi-byte value in high, low byte ordering (least significant byte
last) from a string.

Syntax:
HILOVAL(string$)

Parameters:
string$: the string that contains the number

HILOVAL always returns an unsigned value. To extract a signed value, use the SHILOVAL
function.

HILOVAL uses all characters in the string. If string$ is an empty string, HILOVAL returns 0.

If you need more control over the exact format of the number, use DECODE.

B The SHILOVAL Function
Extracts a signed multi-byte value in high, low byte ordering (least significant byte last)

from a string.

Syntax:
SHILOVAL(string$)

Parameters:
string$: the string that contains the number

SHILOVAL returns a negative value if the most significant bit is 1. To extract an unsignhed
value, use the HILOVAL function.

SHILOVAL uses all characters in the string. If string$ is an empty string, SHILOVAL returns
0.

If you need more control over the exact format of the number, use DECODES$.

B The FMT$ Function

Writes out a string representation of a number with a specified number of digits on either
side of the decimal marker. FMT$ always uses a period as the decimal marker.

Syntax:
FMT$(n, left_digits,right_digits)

Page 58

U.P.M.A.C.S. SCL Language Reference Function Reference

Parameters:

n: the number to write out

left_digits: the number of digits to the left of the decimal point
right_digits: the number of digits to the right of the decimal point

If right_digitsis 0, then FMT$ will not include a decimal point in the output.

If n is too large to be represented in the required number of digits, excess digits are re-
moved.

BExamples:

n left_digits right_digits result
10.458 3 2 010.46
10.458 3 0 010
10.458 1 4 0.4580
10.458 0 2 .46
-10.458 3 2 -010.46
-10.458 3 0 -010
-10.458 1 4 -0.4580
-10.458 0 2 -.46

FMT$ creates a string using a period as the decimal marker, regardless of the current lan-
guage settings in the Regional Settings control panel. Use this function if you want to use
the result string internally only, i.e. if it is intended for a parameter or another SCL pro-
gram, or if you want to use it in an RTS response. If you want to display a number to the
user or write it to the log, use STR$ instead.

If left_digits or right_digits is smaller than 0 or greater than 100, FMT$ generates
an error.

If you need more control over the exact format of the number, use ENCODES$.

B The HEXFMT$ Function
Writes out a hexadecimal representation of a number with a specified number of digits,
using capitals (‘A’-’F’).

Syntax:
HEXFMT$(n,digits)

Parameters:
n: the number to write out
digits: the number of digits

If n is too large to be represented in the required number of digits, excess digits are re-
moved from the top.

HEXFMT$ uses capital ‘A’-’F’ for digits. To format a number using the small letters ‘a’-’f’,
use the HEXFMT2$ function.

If digitsisless than 1, HEXFMT$ generates an error.

Page 59

U.P.M.A.C.S. SCL Language Reference Function Reference

If you need more control over the exact format of the number, use ENCODE$.

B The HEXFMT2$ Function
Writes out a hexadecimal representation of a number with a specified number of digits,
using small letters (‘a’-’f’).

Syntax:
HEXFMT2$(n,digits)

Parameters:.
n: the number to write out
digits: the number of digits

If n is too large to be represented in the required number of digits, excess digits are re-
moved from the top.

HEXFMT2$ uses capital ‘a’-’f’ for digits. To format a number using the small letters ‘A’-"F’,
use the HEXFMT$ function.

If digitsisless than 1, HEXFMT2$ generates an error.

If you need more control over the exact format of the number, use ENCODES.

B The BINFMT$ Function

Writes out a readable binary representation of a number (a series of the characters “1”
and “0”) with a specified number of digits.

Syntax:
BINFMT$(n,digits)

Parameters:
n: the number to write out
digits: the number of digits

If n is too large to be represented in the required number of digits, excess digits are re-
moved from the top.

If digitsisless than 1, BINFMT$ generates an error.

If you need more control over the exact format of the number, use ENCODES$.

B The OCTFMT$ Function

Writes out an octal representation of a number with a specified number of digits.

Syntax:
OCTFMT$(n,digits)

Parameters:
n: the number to write out
digits: the number of digits

Page 60

U.P.M.A.C.S. SCL Language Reference Function Reference

If n is too large to be represented in the required number of digits, excess digits are re-
moved from the top.

If digitsisless than 1, OCTFMT$ generates an error.

If you need more control over the exact format of the number, use ENCODE$.

B The BCDFMT$ Function

Encodes a number into binary coded decimal value.

Syntax:

BCDFMT$(n,bytes)

Parameters:.

n: the number to write out

bytes: the number of bytes to use for the result

BCD stands for binary coded decimal. In binary coded decimal, each
nibble (hex digit) in a byte represents one decimal digit.

A string containing the following four byte values:

$20 $34 $00 $50

represents the number 20340050.

If n is too large to be represented in the required number of bytes, excess bytes are re-
moved from the top.

If nis negative, or if bytes is less than 1, BCDFMT$ generates an error.

If you need more control over the exact format of the number, use ENCODE$.

B The LOHIFMTS Function
Encodes a number into an unsigned multi-byte value in low, high byte ordering (most
significant byte last).

Syntax:
LOHIFMT$(n,bytes)

Parameters:
n: the number to write out
bytes: the number of bytes to use for the result

If n is too large to be represented in the required number of bytes, excess bytes are re-
moved from the top.

If nis negative, or if bytes is less than 1, LOHIFMT$ generates an error.

If you need more control over the exact format of the number, use ENCODES$.

Page 61

U.P.M.A.C.S. SCL Language Reference Function Reference

B The HILOFMTS Function
Encodes a number into an unsigned multi-byte value in high, low byte ordering (least
significant byte last).

Syntax:
HILOFMTS$(n,bytes)

Parameters:
n: the number to write out
bytes: the number of bytes to use for the result

If n is too large to be represented in the required number of bytes, excess bytes are re-
moved from the top.

If nis negative, or if bytes is less than 1, HILOFMT$ generates an error.

If you need more control over the exact format of the number, use ENCODE$.

B The CCNV$ Function

Creates a string containing non-printable characters from a string that has those charac-
ters encoded in special backslash sequences similar to those C compilers use.

Syntax:

CCNVS$(C_string$)
Parameters:

C_string$: the C style string

CCNV$ enables you to easily specify strings containing non-printable characters (ASCII 00-
1F and 7F-FF). To specify a non-printable character, use any of the following sequences
of characters:

Sequence Character Code (hexadeci-
mal)

\O null character ~ $00

\b backspace $08

\t tab $09

\n linefeed $0A

A\% vertical tab $0B

\f form feed $0C

\r cariage re- $0D

turn

to specify any other non-printable character, use \x followed by two hexadecimal digits
specifying the character code. Here are some examples:

Sequence Character Code (hexadeci-
mal)
\x02 start transmission $02

Page 62

U.P.M.A.C.S. SCL Language Reference Function Reference

\x03 end of transmis- $03
sion

\xFF delete $FF

\xB7 $B7

\x69 capital letter “E” $69

To specify a backslash, use two backslashes in a row:

Sequence Character Code (hexadeci-

mal)
\\ backslash $92

Printable characters, with the exception of the backslash and double quotes, can just be
entered plainly. If you feel so inclined, however, you can use a backslash followed by
that character.

Here are some examples:

Sequence Character Code (hexadeci-
mal)
\a letter “a” $97
\6 digit six $56
\/ slash $47
\R capital letter $82
g

Note: CCNV$ would theoretically convert \'" to the double quote character if it
encountered it in a string. However, since the SCL interpreter will not allow double
guotes in string literals, you cannot use the \'" sequence to specify double
guotes. To generate the string:

Hi! My name is Fred "Barbarossa" Staufer!

You cannot use the following function call:

CCNV$('Hi! My name is Fred \'Barbarossa\' Staufer!') <« error!

You can use the \x character sequence and specify the ASCIl code for the dou-
ble quotes character instead:

CCNV$("'Hi! My name is Fred \x34Barbarossa\x34 Staufer!')

You can also use the QUT$ constant instead of CCNV$:

"Hi! My name is Fred "+QUT$+"Barbarossa+QUT$+" Staufer!"

If C_string$ ends in a backslash, or if it contains a \x that is not followed by two hexa-
decimal digits, CCNV$ generates an error.

Page 63

U.P.M.A.C.S. SCL Language Reference Function Reference

B The HCNV$ Function

Creates a string containing characters with arbitrary character codes from a string in
which these codes are written out in hexadecimal.

Syntax:
HCNV$(hex_values$)

Parameters:
hex_values$: the string in which the hex values are written out

hex_values$ has to be a string consisting of two digit hexadecimal values separated by
single spaces. HCONV$ would convert the string:

“"4F 7A 6F 6E 65 21"
to the following string:

""Ozonel!™
If hex_values$ does not conform to the format described above, or if there are any

characters before the first or after the last hex value (including spaces), HCNV$ generates
an error.

Data Decoding/Encoding Functions

B The DECODE Function

Decodes a number from a string using a data decoder.

Syntax:
DECODE(string$,decoder)

Parameters:
string$: the data string
decoder: the number of the decoder to use

DECODE ignores any characters in string$ that appear after the number. If string$
does not contain a humber in the specified encoding, or if there are characters before it,
DECODE returns 0.

To decode more than one value from a data string, use PARSEDEC.

If decoder is not the number of a numerical decoder, DECODE generates an error.

B The DECODE$ Function

Decodes a string from a string using a data decoder.

Page 64

U.P.M.A.C.S. SCL Language Reference Function Reference

Syntax:

DECODE$(string$,decoder)

Parameters:

string$: the data string

decoder: the number of the decoder to use

DECODES$ ignores any characters in string$ that appear after the encoded string. If
string$ does not contain a string in the specified encoding, or if there are characters
before it, DECODE$ returns an empty string.

To generate a decoder on the fly rather than using a pre-defined one, use the
DECODEREGEXS function.

To decode more than one value from a data string, use the PARSEDEC and related
commands.

If decoder is not the number of a string decoder, DECODES$ generates an error.

B The DECODE% Function

Decodes a Boolean value from a string using a data decoder.

Syntax:
DECODE%(string$,decoder)

Parameters:
string$: the data string
decoder: the number of the decoder to use

DECODE% ignores any characters in string$ that appear after the value. If string$ does
not contain a value in the specified encoding, or if there are characters before it,
DECODE% returns false.

To decode more than one value from a data string, use PARSEDEC.

If decoder is not the number of a Boolean decoder, DECODE% generates an error.

B The DECODEREGEX$ Function

Decodes a string from a string using three regular expressions.

Syntax:
DECODEREGEX$(string$,prefix$,pattern$,suffix$)

Parameters:
string$: the data string

prefix$: the prefix pattern, or """ for none
pattern$: the data pattern
suffix$: the suffix pattern, or """ for none

The prefix pattern, if any, describes any data that appears in string$ before the en-
coded string. The data pattern describes the encoded string itself, and the suffix pattern,

Page 65

U.P.M.A.C.S. SCL Language Reference Function Reference

if any, describes data that must appear after the encoded string (e.g. a terminating
character).

DECODEREGEXS$ ignores any characters in string$ that appear after the suffix (or data if
there is no suffix). If string$ does not contain a match for the specified expressions, or if
there are characters before the prefix (or data if there is no prefix), DECODEREGEXS returns
an empty string.

See Appendix A: Regular Expressions in the Developer’s Manual for details on regular ex-
pressions.

To use a pre-defined encoding for parsing a string, use the DECODE$ function.

To decode more than one value from a data string, use the PARSEREGEX and related
commands.

If pattern$ is not a valid regular expression, DECODEREGEXP$ generates an error.

If prefix$ or suffix$ is not an empty string or a valid regular expression,
DECODEREGEXP$ generates an error.

B The ENCODE$ Function

Encodes a number, string, or Boolean value to a string using a data encoder.

Syntax:
ENCODE$(encoder ,number)

or
ENCODE$(encoder,string$)
or

ENCODE$(encoder ,Boolean%)

Parameters:

encoder: the number of the encoder to use
number: the number to encode

string$: the string to encode

Boolean%: the Boolean value to encode

ENCODES$ returns a string that contains the value in the specified encoding.
To encode more than one value to a string, use the APPENDENC and related commands.

If encoder is not the number of an encoder for the right type of value, ENCODES$ gener-
ates an error.

Checksum Functions

B The CHKSUM Function

Calculates the simple checksum for a string.

Page 66

U.P.M.A.C.S. SCL Language Reference Function Reference

Syntax:
CHKSUM(string$)

Parameters:
string$: the string whose checksum should be calculated

CHKSUM adds the character codes of all the characters in string$.

B The CHKSUMLOHI Function

Calculates the simple checksum for a string that contains multibyte characters in low,
high byte ordering.

Syntax:
CHKSUMLOHI (string$,bits_per_char)

Parameters:
string$: the string whose checksum should be calculated
bits per_char: the number of bits per character (8, 16, 24, or 32)

CHKSUMLOHI adds the character codes of all the characters in string$. The characters
can be 8, 16, 24, or 32 bits wide. The least significant byte of each character must ap-
pear first in the string.

Example:

Sring: $10 $08 $35 $F4 $3E $08 $0D $10
Checksum: $0810 ~ $F435 $083E $100D = $11490

If there are not enough bytes in the string, zeros are added internally to complete the last
character.

If bits_per_char is not 8, 16, 24, or 32, CHKSUMLOHI generates an error.

B The CHKSUMHILO Function
Calculates the simple checksum for a string that contains multibyte characters in high,
low byte ordering.

Syntax:
CHKSUMHILO(string$,bits_per_char)

Parameters:
string$: the string whose checksum should be calculated

Page 67

U.P.M.A.C.S. SCL Language Reference Function Reference

bits_per_char: the number of bits per character (8, 16, 24, or 32)

CHKSUMHILO adds the character codes of all the characters in string$. The characters
can be 8, 16, 24, or 32 bits wide. The most significant byte of each character must ap-
pear first in the string.

Example:

Sring: $10 $08 $35 $F4 $3E $08 $0D $10
Checksum: $1008 $35F4 $3E08 $0D10 = $9114

If there are not enough bytes in the string, zeros are added internally to complete the last
character.

If bits_per_char is not 8, 16, 24, or 32, CHKSUMHILO generates an error.

B The LRC$ Function

Creates a string containing the LRC character for a string.

Syntax:
LRC$(string$)

Parameters:
string$: the string whose LRC should be calculated

LRC$ XORs the character codes of all the characters in string$, and creates a string
containing the character with the resulting character code.

To add an LRC to a string, use the following code:

command$=command$+LRC$(command$)

B The LRCLOHI Function

Calculates the LRC for a string that contains multibyte characters in low, high byte order-
ing.

Syntax:
LRCLOHI(string$,bits_per_char)

Parameters:
string$: the string whose LRC should be calculated

Page 68

U.P.M.A.C.S. SCL Language Reference Function Reference

bits_per_char: the number of bits per character (8, 16, 24, or 32)

LRCLOHI XORs the character codes of all the characters in string$. The characters can
be 8, 16, 24, or 32 bits wide. The least significant byte of each character must appear first
in the string.

Example:

Sring: $10 $08 $35 $F4 $3E $08 $0D $10
LRC: $0810 $F435 $083E $100D = $E416

If there are not enough bytes in the string, zeros are added internally to complete the last
character.

If bits_per_char is not 8, 16, 24, or 32, LRCLOHI generates an error.

B The LRCHILO Function

Calculates the LRC for a string that contains multibyte characters in high, low byte order-
ing.

Syntax:

LRCHILO(string$,bits_per_char)

Parameters:

string$: the string whose LRC should be calculated

bits per_char: the number of bits per character (8, 16, 24, or 32)

LRCHILO XORs the character codes of all the characters in string$. The characters can
be 8, 16, 24, or 32 bits wide. The most significant byte of each character must appear first
in the string.

Example:

Sring: $10 $08 $35 $F4 $3E $08 $0D $10
LRC: $1008 $35F4 $3ED8 $0D10 = $16E4

If there are not enough bytes in the string, zeros are added internally to complete the last
character.

Page 69

U.P.M.A.C.S. SCL Language Reference Function Reference

If bits_per_char is not 8, 16, 24, or 32, LRCHILO generates an error.

B The CRC16 Function

Calculates the CRC-16 value for a string.

Syntax:
CRC16(string$)

or
CRC16(string$, initial,final)

Parameters:

string$: the string whose CRC should be calculated
initial: the initial value of the polynomial

final: the final XOR value

CRC16 calculates a 16 bit CRC of string$ using the following polynomial:

X16 + x15 + x2 + 1

initial is the starting value (sometimes called the seed) for the CRC calculation. The
result is XORed with Final. If you do not specify initial and final, the initial value and
final XOR will both be 0.

To take the 2s complement of the result, specify a final XOR value of 65535 ($FFFF).

If initial or final is less than 0, greater than 65535, or contains fractions, CRC16 gener-
ates an error.

B The CRCCCITT Function

Calculates the CRC-CCITT value for a string.

Syntax:
CRCCCITT(string$)

or
CRCCCITT(string$, initial,final)

Parameters:

string$: the string whose CRC should be calculated
initial: the initial value of the polynomial

final: the final XOR value

Page 70

U.P.M.A.C.S. SCL Language Reference Function Reference

CRCCCITT calculates a 16 bit CRC of string$ using the following polynomial:
X16 + x12 + x5 + 1

initial is the starting value (sometimes called the seed) for the CRC calculation. The
result is XORed with Final. If you do not specify initial and final, the initial value will
be $FFFF (65535) and the final XOR will be 0.

To take the 2s complement of the result, specify a final value of 65535 ($FFFF).

If initial or final is less than 0, greater than 65535, or contains fractions, CRCCCITT
generates an error.

B The CRC32 Function

Calculates the CRC-32 value for a string.

Syntax:
CRC32(string$)

or
CRC32(string$, initial,final)

Parameters:

string$: the string whose CRC should be calculated

initial: the initial value of the polynomial
final: the final XOR value

CRC32 calculates a 32 bit CRC of string$ using the following polynomial:
X32+x26+X22+X16+X12+X11+X10+X8+X7+X5+X4+X2+X+1

initial is the starting value (sometimes called the seed) for the CRC calculation. The
result is XORed with final. If you do not specify initial and final, the initial value and
final XOR will both be $FFFFFFFF (4294967295).

To take the 2s complement of the result, specify a final XOR value of 4294967295
($FFFFFFFF).

If initial or Final is less than 0, greater than 4294967295, or contains fractions, CRC32
generates an error.

B The CHKSUM$ Function

Creates a string containing the modulus 256 checksum character for a string.

Syntax:
CHKSUM$(string$)

Parameters:
string$: the string whose checksum should be calculated

Page 71

U.P.M.A.C.S. SCL Language Reference Function Reference

CHKSUM$ adds the character codes of all the characters in string$, and creates a string
containing the character with the character code of that sum modulus 256.

To add a modulus 256 checksum to a string, use the following code:

command$=command$+CHKSUM$(command$)

B The PRNCHKSUM$ Function

Creates a string containing the printable checksum character for a string.

Syntax:
PRNCHKSUM$(string$)

Parameters:
string$: the string whose checksum should be calculated

PRNCHKSUMS$ calculates the printable checksum for string$. The checksum is calculated
as follows:

Subtract 32 from each character code,
add the results together,

take the sum modulo 95,

add 32 to the result.

YV V V V

This checksum will always be a printable character.

To add a printable checksum to a command string, use the following code:

command$=command$+PRNCHKSUM$(command$)

Page 72

U.P.M.A.C.S. SCL Language Reference Function Reference

Time and Date Functions

B The TIMES$ Function
Creates a string containing an SCL time value in the time and date formats specified in
the Regional Settings control panel.

Syntax:
TIME$(time_value)

Parameters:
time_value: the SCL time value

TIMES$ always uses 24h time, and 4 digit dates, regardless of the settings in the Regional
Settings control panel. It will also write out the milliseconds as a 3 digit fraction of the sec-
onds.

If time_value is not a valid time value, TIME$ generates an error.

B The MKTIME Function

Creates an SCL time value from month, day, year, hours, minutes, and seconds.

Syntax:
MKTIME(month,day,year,hours,minutes,seconds)

Parameters:

month: the month (1=January)

day: the day of the month

year: the full year with century (e.g. 1997)

hours: the 24-hour hour (0-23)
minutes: the minutes after the hour (0-59)
seconds: the seconds after the minute (0-59)

If the parameters given do not specify an existing date and time (if you specify February
31, for example), or if the date lies before January 1, 1901, MKT IME generates an error.

B The GMT Function

Converts a time value from the local time zone specified in the Date-Time control panel
to Greenwich mean time.

Syntax:
GMT(local_time)

Parameters:
local_time: the local SCL time value

If local_time is not a valid time value, GMT generates an error.

Page 73

U.P.M.A.C.S. SCL Language Reference Function Reference

B The LCTIME Function
Converts a time value from Greenwich mean time to the local time zone specified in the
Date-Time control panel.

Syntax:
LCTIME(GMT_time)

Parameters:
GMT_time: the Greenwich mean time SCL time value

If GMT_time is not a valid time value, LCTIME generates an error.

B The MON Function

Determines the month from an SCL time value.

Syntax:
MON(time_value)

Parameters:
time_value: the SCL time value

MON returns 1 for January, 2 for February, etc.

If time_value is not a valid time value, MON generates an error.

B The MON$ Function

Determines the full month name in the language specified in the Regional Settings con-
trol panel from an SCL time value.

Syntax:
MON$(time_value)

Parameters:
time_value: the SCL time value

If time_value is not a valid time value, MON$ generates an error.

B The MONAB$ Function

Determines the abbreviated month name in the language specified in the Regional Set-
tings control panel from an SCL time value.

Syntax:
MONAB$(time_value)

Parameters:
time_value: the SCL time value

MONAB$ returns “Jan” for January, “Feb” for February, etc.

Page 74

U.P.M.A.C.S. SCL Language Reference Function Reference

If time_value is not a valid time value, MONAB$ generates an error.

B The DAY Function

Determines the day of the month from an SCL time value.

Syntax:
DAY (time_value)

Parameters:
time_value: the SCL time value

If time_value is not a valid time value, DAY generates an error.

B The YR Function

Determines the full year with century from an SCL time value.

Syntax:
YR(time_value)

Parameters:
time_value: the SCL time value

If time_value is not a valid time value, YR generates an error.

B The HRS Function

Determines the 24-hour hour from an SCL time value.

Syntax:
HRS(time_value)

Parameters:
time_value: the SCL time value

HRS returns the hour in 24 hour time, i.e. it returns 4 for 4am, and 16 for 4pm.

If time_value is not a valid time value, HRS generates an error.

B The MINS Function

Determines the minutes after the hour from an SCL time value.

Syntax:
MINS(time_value)

Parameters:
time_value: the SCL time value

If time_value is not a valid time value, MINS generates an error.

Page 75

U.P.M.A.C.S. SCL Language Reference Function Reference

B The SECS Function

Determines the seconds after the minute from an SCL time value. It will also show the mil-
liseconds as a 3 digit fraction of the seconds.

Syntax:
SECS(time_value)

Parameters:time$
time_value: the SCL time value

If time_value is not a valid time value, SECS generates an error.

B The WKDAY Function

Determines the day of the week from an SCL time value.

Syntax:
WKDAY (time_value)

Parameters:
time_value: the SCL time value

MON returns 1 for Monday, 2 for Tuesday, etc.

If time_value is not a valid time value, WKDAY generates an error.

B The WKDAY$ Function

Determines the full week day name in the language specified in the Regional Settings
control panel from an SCL time value.

Syntax:
WKDAY$(time_value)

Parameters:
time_value: the SCL time value

If time_value is not a valid time value, WKDAY$ generates an error.

B The WKDAYAB$ Function

Determines the abbreviated week day name in the language specified in the Regional
Settings control panel from an SCL time value.

Syntax:
WKDAYAB$(time_value)

Parameters:
time_value: the SCL time value

WKDAYAB$ returns “Mon” for Monday, “Tue” for Tuesday, etc.

Page 76

U.P.M.A.C.S. SCL Language Reference Function Reference

If time_value is not a valid time value, WKDAYAB$ generates an error.

B The INTVMINS$ Function

Creates a string containing a time interval, expressed as minutes and seconds, using the
time separator specified in the Regional Settings control panel.

Syntax:
INTVMINS$(seconds)

Parameters:.
seconds: the time interval, in seconds

INTVMINSS rounds seconds to the nearest second. If you want to display a counter, you
should round seconds using the RNDDWN or RNDUP function before calling INTVMINSS$. Use
RNDDWN if you are counting up, and RNDUP if you are counting down. This will ensure that
the counter changes over from one second value to the next at the correct time.

INTVMINSS$ writes the interval as minutes and seconds. If you want the interval expressed
as hours, minutes, and seconds, use the INTVHRS$ function.

If seconds is negative, INTVMINS$ generates an error.

B The INTVHRS$ Function

Creates a string containing a time interval, expressed as hours, minutes, and seconds,
using the time separator specified in the Regional Settings control panel.

Syntax:
INTVHRS$(seconds)

Parameters:
seconds: the time interval, in seconds

INTVHRS$ rounds seconds to the nearest second. If you want to display a counter, you
should round seconds using the RNDDWN or RNDUP function before calling INTVHRSS. Use
RNDDWN if you are counting up, and RNDUP if you are counting down. This will ensure that
the counter changes over from one second value to the next at the correct time.

INTVHRS$ writes the interval as hours, minutes, and seconds. If you want the interval ex-
pressed as minutes and seconds only, use the INTVMINSS function.

If seconds is negative, INTVHRSS$ generates an error.

Dialog Button Callback Functions

B The LITEM$ Function

Gets the text of a dialog list item.

Page 77

U.P.M.A.C.S. SCL Language Reference Function Reference

Syntax:
LITEMS(item_variable, index)

Arguments:
item variable: the variable associated with the list

index: the 1-based index of the list item

Use LITEMS$ inside a dialog button callback to get the text shown in a list item. The first
item has index 1.

Use MAXLITEM to determine the maximum list item index. Use LITEMEXISTS% to deter-
mine if the list item has been deleted using the DELLITEM command.

If it is used outside a dialog button callback, or if item _variable is not associated with a
list, LITEM$ generates an error.

If index is smaller than 1, or larger than maximum list item index, or if the list item with the
specified index has been deleted, LITEM$ generates an error.

This function is not available within programs for sources, checksums, and SABus response
data, programs for SABus commands, or RTS controls.

B The LITEMEXISTS% Function

Determines if a dialog list has an item with the specified index.

Syntax:
LITEMEXISTS®%(item_variable, index)

Arguments:
item_variable: the variable associated with the list

index: the 1-based index of the list item

Use LITEMEXISTS% inside a dialog button callback to determine if the list has an item
with the specified index. The first item has index 1.

LITEMEXISTS% is true if an item with the specified index exists. It is false if the index is
greater than the maximum list item index, or if the item has been deleted using the
DELLITEM command.

Use COUNTLITEMS to determine the number of items in the list for which LITEMEXISTS% is
true. Use LITEMS to get the text of a list item.

If it is used outside a dialog button callback, or if item_variable is not associated with a
list, LITEMEXISTS% generates an error.

If index is smaller than 1, LITEMEXISTS% generates an error.

This function is not available within programs for sources, checksums, and SABus response
data, programs for SABus commands, or RTS controls.

B The MAXLITEM Function

Determines the maximum list item index in a dialog list.

Page 78

U.P.M.A.C.S. SCL Language Reference Function Reference

Syntax:
MAXLITEM(item_variable)

Arguments:
item_variable: the variable associated with the list

Use MAXLITEM inside a dialog button callback to determine the largest index of all items
in a dialog list. Please note that that the item with that index may have been deleted
using the DELLITEM command.

If you did not add any items to the list, or if you cleared the list using the CLRLITEMS
command, MAXLITEM is O.

To get the actual number of items in the list, excluding deleted ones, use the
COUNTLITEMS function.

If it is used outside a dialog button callback, or if item_variable is not associated with a
list, MAXLITEM generates an error.

This function is not available within programs for sources, checksums, and SABus response
data, programs for SABus commands, or RTS controls.

B The COUNTLITEMS Function

Counts the number of items in a dialog list.

Syntax:
COUNTLITEMS(item_variable)

Arguments:
item_variable: the variable associated with the list

Use COUNTLITEMS inside a dialog button callback to determine the number of items visi-
ble in a dialog list. COUNTLITEMS only counts existing items, items that have been deleted
using the DELLITEM command are not counted.

Do not confuse this function with MAXLITEM, which returns the maximum list item index. If
any items have been deleted, COUNTLITEMS is smaller than MAXLITEM.

If it is used outside a dialog button callback, or if item_variable is not associated with a
list, COUNTLITEMS generates an error.

This function is not available within programs for sources, checksums, and SABus response
data, programs for SABus commands, or RTS controls.

B The MITEM$ Function

Gets the text of a dialog menu item.

Syntax:
MITEM$(item_variable, index)

Arguments:
item_variable: the variable associated with the menu

index: the 1-based index of the menu item

Page 79

U.P.M.A.C.S. SCL Language Reference Function Reference

Use MITEMS$ inside a dialog button callback to get the text shown in a menu item. The first
item has index 1.

Use MAXMITEM to determine the maximum menu item index. Use MITEMEXISTS% to de-
termine if the menu item has been deleted using the DELMITEM command.

If it is used outside a dialog button callback, or if item_variable is not associated with a
menu, MITEM$ generates an error.

If index is smaller than 1, or larger than the maximum menu item index, or if the menu
item with the specified index has been deleted, MITEM$ generates an error.

This function is not available within programs for sources, checksums, and SABus response
data, programs for SABus commands, or RTS controls.

B The MITEMEXISTS% Function

Determines if a dialog menu has an item with the specified index.

Syntax:
MITEMEX1STS%(item_variable, index)

Arguments:
item_variable: the variable associated with the menu

index: the 1-based index of the menu item

Use MITEMEXISTS% inside a dialog button callback to determine if the menu has an item
with the specified index. The first item has index 1.

MITEMEXISTSY% is true if an item with the specified index exists. It is false if the index is
greater than the maximum menu item index, or if the item has been deleted using the
DELMITEM command.

Use COUNTMITEMS to determine the number of items in the menu for which
MITEMEX1ISTS% is true. Use MITEM$ to get the text of a menu item.

If it is used outside a dialog button callback, or if item_variable is not associated with a
menu, MITEMEXISTS% generates an error.

If index is smaller than 1, MITEMEXISTS% generates an error.

This function is not available within programs for sources, checksums, and SABus response
data, programs for SABus commands, or RTS controls.

B The MAXMITEM Function

Determines the maximum menu item index in a dialog menu.

Syntax:
MAXMITEM(item_variable)

Arguments:
item_variable: the variable associated with the menu

Page 80

U.P.M.A.C.S. SCL Language Reference Function Reference

Use MAXMITEM inside a dialog button callback to determine the largest index of all items
in a dialog menu. Please note that that the item with that index may have been deleted
using the DELMITEM command.

If you did not add any items to the menu, or if you cleared the menu using the
CLRMITEMS command, MAXMITEM is 0.

To get the actual number of items in the menu, excluding deleted ones, use the
COUNTMITEMS function.

If it is used outside a dialog button callback, or if item_variable is not associated with a
menu, MAXMITEM generates an error.

This function is not available within programs for sources, checksums, and SABus response
data, programs for SABus commands, or RTS controls.

B The COUNTMITEMS Function

Counts the number of items in a dialog menu.

Syntax:
COUNTMITEMS(item_variable)

Arguments:
item_variable: the variable associated with the menu

Use COUNTMITEMS inside a dialog button callback to determine the number of items visi-
ble in a dialog menu. COUNTMITEMS only counts existing items, items that have been de-
leted using the DELMITEM command are not counted.

Do not confuse this function with MAXMITEM, which returns the maximum menu item in-
dex. If any items have been deleted, COUNTMITEMS is smaller than MAXMITEM.

If it is used outside a dialog button callback, or if item_variable is not associated with a
menu, COUNTMITEMS generates an error.

This function is not available within programs for sources, checksums, and SABus response
data, programs for SABus commands, or RTS controls.

File Functions

B The FLEN Function

Determines the length of an open file.

Syntax:
FLEN(File_number)

Parameters:
file_number: the file number

FLEN always determines the length of the file in bytes, regardless of whether
Ffile_number is a text or a binary file. If File_number is a text file, the length in bytes is

Page 81

U.P.M.A.C.S. SCL Language Reference Function Reference

not necessarily the length in characters, since CRs are stored as a CR-LF combination in
Windows. There is no way to determine the length of a text file in characters without
reading all the data.

If File_number does not represent an open file, FLEN generates an error.
If File_number does represents a network connection, FLEN generates an error.

This function is not available within programs for sources, checksums, and SABus response
data.

B The FPOS Function

Determines the current position within an open file.

Syntax:

FPOS(File_number)
Parameters:

Ffile_number: the file number

FPOS always determines the current position in bytes from the beginning of the file, re-
gardless of whether file_number is a text or a binary file. If file_number is a text file, the
position in bytes is not necessarily the position in characters, since CRs are stored as a CR-
LF combination in Windows. There is no way to determine the position within a text file in
characters. If you require that information, you must keep track of the file position your-
self.

If File_number does not represent an open file, FPOS generates an error.
If File_number does represents a network connection, FPOS generates an error.

This function is not available within programs for sources, checksums, and SABus response
data.

Register Functions

B The REGNAME$ Function

Returns the name of a register.

Syntax:
REGNAME$ (tag$)

Parameters:
tag$: the tag of the register

If tag$ is not the tag of a register, REGNAMES$ generates an error.

Page 82

U.P.M.A.C.S. SCL Language Reference Function Reference

B The ONLOGSTR$ Function

Returns the log string for the ON state of a register.

Syntax:
ONLOGSTR$(tag$)

Parameters:
tag$: the tag of the register

If tag$ is not the tag of a register, ONLOGSTR$ generates an error.

B The ONLOGSTR$ Function

Returns the log string for the OFF state of a register.

Syntax:
OFFLOGSTR$(tag$)

Parameters:
tag$: the tag of the register

If tag$ is not the tag of a register, OFFLOGSTR$ generates an error.

B The REGSTAT% Function

Returns the ON/OFF or alarm state of a register.

Syntax:
REGSTAT%(tag$)

Parameters:
tag$: the tag of the register

REGSTAT% is true if the register is in its ON or alarm state, and false if it is not. If the register
is masked or in its error state, REGSTAT% is always false.

Since the state of a bistate register is identical to its value, REGSTAT% with a bistate regis-
ter as a parameter is equivalent to BSTVAL%.

If tag$ is not the tag of a register, REGSTAT% generates an error.

B The REGMASK% Function

Returns the mask state of a register.

Syntax:
REGMASK%(tag$)

Parameters:
tag$: the tag of the register

Page 83

U.P.M.A.C.S. SCL Language Reference Function Reference

REGMASK% is true if the register is masked, and false if it is unmasked. REGMASK% is true re-
gardless of whether the register was masked manually, automatically, or internally.

If tag$ is not the tag of a register, REGMASK% generates an error.

B The REGHIDDEN% Function

Returns the hidden state of a register.

Syntax:
REGH IDDEN%(tag$)

Parameters:
tag$: the tag of the register

REGHIDDENY% is true if the register is hidden, false if it is not.
If tag$ is not the tag of a register, REGHIDDEN% generates an error.

B The REGERR% Function

Returns the error state of a register.

Syntax:
REGERR%(tag$)

Parameters:
tag$: the tag of the register

REGERR% is true if the register is in its error state, and false if it is not. If the register is
masked, REGERRY% is always false.

If tag$ is not the tag of a register, REGERR% generates an error.

B The BSTVAL% Function

Returns the value of a bistate register.

Syntax:
BSTVAL%(tag$)

Parameters:
tag$: the tag of the register

BSTVAL% is true if the register is in its ON state, and false if it is not. If the register is masked
or in its error state, BSTVAL% is always false.

Since the value of a bistate register is identical to its state, BSTVAL% is equivalent to
REGSTAT% for bistate registers.

If tag$ is not the tag of a bistate register, BSTVAL% generates an error.

Page 84

U.P.M.A.C.S. SCL Language Reference Function Reference

B The BSTDLY Function

Returns the response delay, in s, of a bistate register.

Syntax:
BSTDLY (tag$)

Parameters:
tag$: the tag of the register

If tag$ is not the tag of a bistate register, BSTDLY generates an error.

B The DIGVAL Function

Returns the value of a digital register.

Syntax:
DIGVAL(tag$)

Parameters:
tag$: the tag of the register

If the register is masked or in its error state, DIGVAL is always O.
Use DIGVALS$ to get the name of the register’s value.

If tag$ is not the tag of a digital register, DIGVAL generates an error.

B The DIGVAL Function

Returns the value name of the value of a digital register.

Syntax:
DIGVAL$(tag$)

Parameters:
tag$: the tag of the register

If the register is masked or in its error state, or if the current value of the register doesn’t
have a name, DIGVALS is an empty string.

Use DIGVAL to get the value of the register as a number.

If tag$ is not the tag of a digital register, DIGVAL$ generates an error.

B The ANAVAL Function

Returns the value of an analog register.

Syntax:
ANAVAL (tag$)

or
ANAVAL (tag$, index)

Page 85

U.P.M.A.C.S. SCL Language Reference Function Reference

Parameters:
tag$: the tag of the register
index: the 1-based index of the value

If the register is masked or in its error state, ANAVAL is always 0.

index is the index of the value. A register with a size of one value has only a value with
index 1. A register with a size of 4 values has values with indices 1, 2, 3, and 4.

If the register has a size of one value, you do not have to specify an index, as it is always
1. If the register has a size of more than one value, and you do not specify an index, then
the value with the highest index will be returned.

Use ANAGL to access the values greater / less status. If you want to get the highest or
lowest of all the register’s value, use ANAHIGH or ANALOW to determine the index of the
appropriate value, and then use ANAVAL to retrieve the value with that index.

If tag$ is not the tag of an analog register, or if index is smaller than 1, larger than the
size of the register, or if it contains fractions, ANAVAL generates an error.

B The ANAVAL Function

Returns the greater / less status of an analog register’s value.

Syntax:
ANAGL (tag$)

or
ANAGL (tag$, index)

Parameters:
tags$: the tag of the register
index: the 1-based index of the value

ANAGL is 0 for normal values (equal), -1 if the value’s state is “less than”, and 1 if it is
“greater than”. If the register is masked or in its error state, ANAGL is always 0.

index is the index of the value. A register with a size of one value has only a value with
index 1. A register with a size of 4 values has values with indices 1, 2, 3, and 4.

If the register has a size of one value, you do not have to specify an index, as it is always
1. If the register has a size of more than one value, and you do not specify an index, then
the state of the value with the highest index will be returned.

If you want to get the state of the highest or lowest of all the register’s value, use
ANAHIGH or ANALOW to determine the index of the appropriate value, and then use ANAGL
to retrieve the state of the value with that index.

If tag$ is not the tag of an analog register, or if index is smaller than 1, larger than the
size of the register, or if it contains fractions, ANAGL generates an error.

B The ANAHIGH Function

Returns the index of the highest of all the values of an analog register.

Page 86

U.P.M.A.C.S. SCL Language Reference Function Reference

Syntax:
ANAHIGH(tag$)

Parameters:
tag$: the tag of the register

ANAHIGH does not return the actual highest value, merely its index. Use ANAHIGH to de-
termine the index of the highest value, then retrieve the actual value using ANAVAL and
ANAGL.

If the register is masked or in its error state, ANAHIGH is 0. Please remember that 0 is not a
valid index for a value.

If tag$ is not the tag of an analog register, ANAHIGH generates an error.

B The ANALOW Function

Returns the index of the lowest of all the values of an analog register.

Syntax:
ANALOW(tag$)

Parameters:
tag$: the tag of the register

ANALOW does not return the actual lowest value, merely its index. Use ANALOW to deter-
mine the index of the lowest value, then retrieve the actual value using ANAVAL and
ANAGL.

If the register is masked or in its error state, ANALOW is 0. Please remember that 0 is not a
valid index for a value.

If tag$ is not the tag of an analog register, ANALOW generates an error.

B The ANAMIN Function

Returns the low limit of an analog register.

Syntax:
ANAMIN(tag$)

Parameters:
tag$: the tag of the register

If the register does not have a limit, ANAMIN returns a very large negative number.

If tag$ is not the tag of an analog register, ANAMIN generates an error.

B The ANAMAX Function

Returns the high limit of an analog register.

Page 87

U.P.M.A.C.S. SCL Language Reference Function Reference

Syntax:
ANAMAX (tag$)

Parameters:
tag$: the tag of the register

If the register does not have a limit, ANAMAX returns a very large number.

If tag$ is not the tag of an analog register, ANAMAX generates an error.

B The STRVALS$ Function

Returns the value of a string register.

Syntax:
STRVAL$(tag$)

Parameters:
tag$: the tag of the register
If the register is masked or in its error state, STRVALS is always an empty (0 length) string.

If tag$ is not the tag of a string register, STRVAL$ generates an error.

Serial Communication Functions

B The DRVNDATA$ Function

Returns the content of a response data element of the last command sent.

Syntax:
DRVNDATA$(tag$)

Parameters:
tag$: the tag of the response data element

DRVNDATAS return the content of the response data element with the specified tag of the
response to the last command sent using the SENDCMD command. DRVNDATAS$ is an
empty if no valid response was received. Use the DRVSUCCESS% reserved variable to de-
termine if a valid response was received.

You can use the DRVDATAS$ reserved variable to access the data of the first response
data element.

You cannot use DRVNDATAS if you sent data to the serial port using a command other
than SENDCMD.

If tag$ is not the tag of a response data response element of the last command sent,
DRVNDATAS$ generates an error.

This function is not available within programs for sources, checksums, and SABus response
data.

Page 88

U.P.M.A.C.S. SCL Language Reference Function Reference

B The DRVNERROR Function

Returns a numerical error code that the device returned to the last command sent.

Syntax:
DRVNERROR(tag$)

Parameters:
tag$: the tag of the error code

DRVNERROR returns the error code with the specified tag returned by the device to the
last command sent using the SENDCMD command. DRVNERROR is 0 if a valid response was
received or the command timed out. Use the DRVERRORY% reserved variable to determine
if an error response was received.

Use the DRVNERRORS function to retrieve string error codes. You can use the DRVERROR
reserved variable to access the main error code if it is a string.

You cannot use DRVNERROR if you sent data to the serial port using a command other
than SENDCMD.

If tag$ is not the tag of a numerical error code of the device of the last command sent,
DRVNERROR generates an error.

This function is not available within programs for sources, checksums, and SABus response
data.

B The DRVNERROR$ Function

Returns a string error code that the device returned to the last command sent.

Syntax:
DRVNERROR$(tag$)

Parameters:
tag$: the tag of the error code

DRVNERRORS returns the error code with the specified tag returned by the device to the
last command sent using the SENDCMD command. DRVNERRORS is an empty string if a
valid response was received or the command timed out. Use the DRVERROR% reserved
variable to determine if an error response was received.

Use the DRVNERROR function to retrieve numerical error codes. You can use the
DRVERRORS reserved variable to access the main error code if it is numerical.

You cannot use DRVNERRORS$ if you sent data to the serial port using a command other
than SENDCMD.

If tag$ is not the tag of a string error code of the device of the last command sent,
DRVNERROR$ generates an error.

This function is not available within programs for sources, checksums, and SABus response
data.

Page 89

U.P.M.A.C.S. SCL Language Reference Function Reference

B The DRVENABLED% Function

Determines if a device is enabled.

Syntax:
DRVENABLED%(port_tag$,device_tag$)

Parameters:
port_tag$: the tag of the serial port the device is attached to
device_tag$: the tag of the device

DRVENABLED% is true if the device is enabled, false if it is disabled.

In device driver programs, port_tag$ and device_tag$ must be empty strings (***"). Only
the device the program belongs to can be accessed by device driver programs.

If port_tag$ is not the tag of a serial port, or device_tag$ is not the tag of a device on
that port, DRVENABLED% generates an error.

B The CMDENABLED% Function

Determines if a device command is enabled.

Syntax:
CMDENABLED%(port_tag$,device_tag$,command_tag$, command parameters)

Parameters:

port_tag$: the tag of the serial port the command’s device is attached to
device_tag$: the tag of the command’s device

command_tag$: the tag of the command

The tag of the command is followed by a list of parameters, separated by commas. You
must specify an expression for each of the command’s parameters, in the order in which
they are defined in the device driver. Use a numerical expression for digital and analog
parameters, a string expression for string parameters, and a Boolean expression for
bistate parameters. You can also use a string expression to specify the name of the value
for digital parameters.

CMDENABLED% is true if the command is enabled, false if it is disabled.

In device driver programs, port_tag$ and device_tag$ must be empty strings (""'"). Only
commands of the device the program belongs to can be accessed by device driver
programs.

If port_tag$ is not the tag of a serial port, device_ tag$ is not the tag of a device on
that port, or command_tag$ is not the tag of a command in the device’s driver,

CMDENABLED% generates an error.

B The DRVREADY% Function

Determines if a device is ready to receive or send data.

Syntax:
DRVREADY%(port_tag$, device_tag$)

Page 90

U.P.M.A.C.S. SCL Language Reference Function Reference

Parameters:
port_tag$: the tag of the serial port the device is attached to
device_tag$: the tag of the device driver the device uses

DRVREADY% is true if the device is enabled and communicating, false if it is disabled, or if it
timed out.

In device driver programs, port_tag$ and device_tag$ must be empty strings (*"*"). Only
the device the program belongs to can be accessed by device driver programs.

If port_tag$ is not the tag of a serial port, or device_tag$ is not the tag of a device
driver on that port, DRVREADY% generates an error.

B The SUSPENDED% Function

Determines if a serial port is suspended.

Syntax:
SUSPENDED%(tag$)

Parameters:
tag$: the tag of the serial port

SUSPENDED% is true if the port is suspended, false if it is polling.

In device driver programs, tag$ must be an empty string (*'**). Only the serial port of the
device the program belongs to can be accessed by device driver programs.

If tag$ is not the tag of a serial port, SUSPENDED% generates an error.

Serial Device Object Functions

B The DRVOBJVAL Function

Returns the value of a digital or analog serial data object.

Syntax:
DRVOBJVAL(port_tag$,device_tag$,object_tag$, object parameters)

or
DRVOBJVAL(port_tag$,device_tag$,object tag$, object parameters, index)

Parameters:

port_tag$: the tag of the serial port the data object’s device is attached to
device_tag$: the tag of the data object’s device

object_tag$: the tag of the data object

index: the 1-based index of the value

The tag of the data object is followed by a list of parameters, separated by commas.
You must specify an expression for each of the object’s parameters, in the order in which
they are defined in the device driver. Use a numerical expression for digital and analog

Page 91

U.P.M.A.C.S. SCL Language Reference Function Reference

parameters, a string expression for string parameters, and a Boolean expression for
bistate parameters. You can also use a string expression to specify the name of the value
for digital parameters.

If the data object is masked or in its error state, DRVOBJVAL is always 0.

index is the index of the value, and is only used for analog data objects. A data object
with a size of one value has only a value with index 1. A data object with a size of 4 val-
ues has values with indices 1, 2, 3, and 4.

If an analog data object has a size of one value, you do not have to specify an index, as
it is always 1. If the data object has a size of more than one value, and you do not spec-
ify an index, then the value with the highest index will be returned.

Use DRVOBJGL to access the greater / less status of an analog data object’s value. If you
want to get the highest or lowest of all the values of an analog data object, use
DRVOBJHIGH or DRVOBJLOW to determine the index of the appropriate value, and then
use DRVOBJVAL to retrieve the value with that index.

Use DRVOBJVALS to get the value of a string data object, and DRVOBJVAL% to get the
value of a bistate data object. You can also use DRVOBJVALS to get the name of a digi-
tal data object’s value.

In device driver programs, port_tag$ and device_tag$ must be empty strings (****). Only
data objects of the device the program belongs to can be accessed by device driver
programs.

Internal data objects can only be accessed by device driver programs.

If port_tag$ is not the tag of a serial port, device_tag$ is not the tag of a device on
that port, or object_tag$ is not the tag of a digital or analog data object in the device’s
driver, DRVOBJVAL generates an error.

If object_tag$ is the tag of a digital data object and you specified an index, DRVOBJVAL
generates an error.

If index is smaller than 1, larger than the size of the data object, or if it contains fractions,
DRVOBJVAL generates an error.

B The DRVOBJVALS$ Function

Returns the value of a string serial data object or the name of a digital serial data ob-
ject’s value.

Syntax:
DRVOBJVALS$(port_tag$,device_tag$,object_tag$, object parameters)

Parameters:

port_tag$: the tag of the serial port the data object’s device is attached to
device_tag$: the tag of the data object’s device

object_tag$: the tag of the data object

The tag of the data object is followed by a list of parameters, separated by commas.
You must specify an expression for each of the object’s parameters, in the order in which
they are defined in the device driver. Use a numerical expression for digital and analog
parameters, a string expression for string parameters, and a Boolean expression for

Page 92

U.P.M.A.C.S. SCL Language Reference Function Reference

bistate parameters. You can also use a string expression to specify the name of the value
for digital parameters.

If the data object is masked or in its error state, DRVOBJVALS$ is always an empty string.
DRVOBJVALS is also an empty string if tag$ is the tag of a digital data object and that ob-
ject’s value has no name.

Use DRVOBJVAL to get the value of an analog data object, and DRVOBJVAL% to get the
value of a bistate data object. You can also use DRVOBJVAL to get the value of a digital
data object as a number.

In device driver programs, port_tag$ and device_tag$ must be empty strings (****). Only
data objects of the device the program belongs to can be accessed by device driver
programs.

Internal data objects can only be accessed by device driver programs.

If port_tag$ is not the tag of a serial port, device_tag$ is not the tag of a device on
that port, or object_tag$ is not the tag of a string or digital data object in the device’s
driver, DRVOBJVAL% generates an error.

B The DRVOBJVALY% Function

Returns the value of a bistate serial data object.

Syntax:
DRVOBJVAL%(port_tag$,device_tag$,object_tag$, object parameters)

Parameters:

port_tag$: the tag of the serial port the data object’s device is attached to
device_tag$: the tag of the data object’s device

object_tag$: the tag of the data object

The tag of the data object is followed by a list of parameters, separated by commas.
You must specify an expression for each of the object’s parameters, in the order in which
they are defined in the device driver. Use a numerical expression for digital and analog
parameters, a string expression for string parameters, and a Boolean expression for
bistate parameters. You can also use a string expression to specify the name of the value
for digital parameters.

DRVOBJVAL% is true if the data object’s value is ON, and false of it is OFF. If the data ob-
jectis masked or in its error state, DRVOBJIVAL% is always false.

Use DRVOBJVAL to get the value of a digital or analog data object, and DRVOBJVALS$ to
get the value of a digital data object. You can also use DRVOBJVAL$ to get the name of
a digital data object’s value.

In device driver programs, port_tag$ and device_tag$ must be empty strings ("**"). Only
data objects of the device the program belongs to can be accessed by device driver
programs.

Internal data objects can only be accessed by device driver programs.

If port_tag$ is not the tag of a serial port, device_ tag$ is not the tag of a device on
that port, or object_tag$ is not the tag of a bistate data object in the device’s driver,
DRVOBJVALY% generates an error.

Page 93

U.P.M.A.C.S. SCL Language Reference Function Reference

B The DRVOBJGL Function

Returns the greater / less status of an analog serial data object’s value.

Syntax:
DRVOBJGL(port_tag$,device_tag$,object tag$, object parameters)

or
DRVOBJGL(port_tag$,device_tag$,object tag$, object parameters, index)

Parameters:

port_tag$: the tag of the serial port the data object’s device is attached to
device_tag$: the tag of the data object’s device

object_tag$: the tag of the data object

index: the 1-based index of the value

The tag of the data object is followed by a list of parameters, separated by commas.
You must specify an expression for each of the object’s parameters, in the order in which
they are defined in the device driver. Use a numerical expression for digital and analog
parameters, a string expression for string parameters, and a Boolean expression for
bistate parameters. You can also use a string expression to specify the name of the value
for digital parameters.

DRVOBJGL is 0 for normal values (equal), -1 if the value’s state is less than, and 1 if it is
greater than. If the data object is masked or in its error state, DRVOBJGL is always O.

index is the index of the value. A data object with a size of one value has only a value
with index 1. A data object with a size of 4 values has values with indices 1, 2, 3, and 4.

If the data object has a size of one value, you do not have to specify an index, as it is
always 1. If the data object has a size of more than one value, and you do not specify
an index, then the state of the value with the highest index will be returned.

If you want to get the state of the highest or lowest of all the data object’s value, use
DRVOBJHIGH or DRVOBJLOW to determine the index of the appropriate value, and then
use DRVOBJGL to retrieve the state of the value with that index.

In device driver programs, port_tag$ and device_tag$ must be empty strings ("*'"). Only
data objects of the device the program belongs to can be accessed by device driver
programs.

Internal data objects can only be accessed by device driver programs.

If port_tag$ is not the tag of a serial port, device_tag$ is not the tag of a device on
that port, or object_tag$ is not the tag of an analog data object in the device’s driver,
DRVOBJGL generates an error.

If index is smaller than 1, larger than the size of the data object, or if it contains fractions,
DRVOBJGL generates an error.

B The DRVOBJHIGH Function

Returns the index of the highest of all the values of an analog serial data object.

Syntax:
DRVOBJHIGH(port_tag$,device_tag$,object_tag$, object parameters)

Page 94

U.P.M.A.C.S. SCL Language Reference Function Reference

Parameters:

port_tag$: the tag of the serial port the data object’s device is attached to
device_tag$: the tag of the data object’s device

object_tag$: the tag of the data object

The tag of the data object is followed by a list of parameters, separated by commas.
You must specify an expression for each of the object’s parameters, in the order in which
they are defined in the device driver. Use a numerical expression for digital and analog
parameters, a string expression for string parameters, and a Boolean expression for
bistate parameters. You can also use a string expression to specify the name of the value
for digital parameters.

DRVOBJHIGH does not return the actual highest value, merely its index. Use DRVOBJHIGH
to determine the index of the highest value, then retrieve the actual value using
DRVOBJVAL and DRVOBJGL.

If the data object is masked or in its error state, DRVOBJHIGH is 0. Please remember that 0
is not a valid index for a value.

In device driver programs, port_tag$ and device_tag$ must be empty strings (*'**). Only
data objects of the device the program belongs to can be accessed by device driver
programs.

Internal data objects can only be accessed by device driver programs.

If port_tag$ is not the tag of a serial port, device_tag$ is not the tag of a device on
that port, or object_tag$ is not the tag of an analog data object in the device’s driver,
DRVOBJHIGH generates an error.

B The DRVOBJLOW Function

Returns the index of the lowest of all the values of an analog serial data object.

Syntax:
DRVOBJLOW(port_tag$,device_tag$,object_tag$, object parameters)

Parameters:

port_tag$: the tag of the serial port the data object’s device is attached to
device_tag$: the tag of the data object’s device

object_tag$: the tag of the data object

The tag of the data object is followed by a list of parameters, separated by commas.
You must specify an expression for each of the object’s parameters, in the order in which
they are defined in the device driver. Use a numerical expression for digital and analog
parameters, a string expression for string parameters, and a Boolean expression for
bistate parameters. You can also use a string expression to specify the name of the value
for digital parameters.

DRVOBJLOW does not return the actual lowest value, merely its index. Use DRVOBJLOW to
determine the index of the lowest value, then retrieve the actual value using DRVOBJVAL
and DRVOBJGL.

If the data object is masked or in its error state, DRVOBJLOW is 0. Please remember that 0 is
not a valid index for a value.

Page 95

U.P.M.A.C.S. SCL Language Reference Function Reference

In device driver programs, port_tag$ and device_tag$ must be empty strings (**'"). Only
data objects of the device the program belongs to can be accessed by device driver
programs.

Internal data objects can only be accessed by device driver programs.

If port_tag$ is not the tag of a serial port, device_tag$ is not the tag of a device on
that port, or object_tag$ is not the tag of an analog data object in the device’s driver,
DRVOBJLOW generates an error.

B The DRVOBJIMASK% Function

Returns the mask state of a serial data object.

Syntax:
DRVOBJIMASK%(port_tag$,device_tag$,object_tag$, object parameters)

Parameters:

port_tag$: the tag of the serial port the data object’s device is attached to
device_tag$: the tag of the data object’s device

object_tag$: the tag of the data object

The tag of the data object is followed by a list of parameters, separated by commas.
You must specify an expression for each of the object’s parameters, in the order in which
they are defined in the device driver. Use a numerical expression for digital and analog
parameters, a string expression for string parameters, and a Boolean expression for
bistate parameters. You can also use a string expression to specify the name of the value
for digital parameters.

DRVOBJIMASK% is true if the data object is masked, and false if it is unmasked.
DRVOBJIMASKY% is true regardless of whether the data object was masked automatically or
using the MASKDRVOBJ command.

In device driver programs, port_tag$ and device_tag$ must be empty strings (****). Only
data objects of the device the program belongs to can be accessed by device driver
programs.

Internal data objects can only be accessed by device driver programs.

If port_tag$ is not the tag of a serial port, device_tag$ is not the tag of a device on
that port, or object _tag$ is not the tag of a data object in the device’s driver,
DRVOBJMASK% generates an error.

B The DRVOBJERR% Function

Returns the error state of a serial data object.

Syntax:
DRVOBJERR%(port_tag$,device_tag$,object_tag$, object parameters)

Parameters:

port_tag$: the tag of the serial port the data object’s device is attached to
device_tag$: the tag of the data object’s device

object_tag$: the tag of the data object

Page 96

U.P.M.A.C.S. SCL Language Reference Function Reference

The tag of the data object is followed by a list of parameters, separated by commas.
You must specify an expression for each of the object’s parameters, in the order in which
they are defined in the device driver. Use a numerical expression for digital and analog
parameters, a string expression for string parameters, and a Boolean expression for
bistate parameters. You can also use a string expression to specify the name of the value
for digital parameters.

DRVOBJERR% is true if the data object is in its error state, and false if it is not. If the data
object is masked, DRVOBJERR% is always false.

In device driver programs, port_tag$ and device_tag$ must be empty strings (***"). Only
data objects of the device the program belongs to can be accessed by device driver
programs.

Internal data objects can only be accessed by device driver programs.

If port_tag$ is not the tag of a serial port, device_tag$ is not the tag of a device on
that port, or object tag$ is not the tag of a data object in the device’s driver,
DRVOBJERR% generates an error.

Miscellaneous Functions

B The USRPRV% Function

Determines if the current user is allowed to perform a certain action.

Syntax:
USRPRV%(privilege_ID)

Parameters:
privilege ID: the ID of the privilege

USRPRV% is true if the current user is allowed to perform the specified action, false if his
user level is too low.

privilege_ID can be one of the following values:

S

privilege
acknowledge alarms

execute controls

perform port diagnostics
enable and disable devices
mask and unmask registers
calibrate analog registers
set analog register limits

set bistate register response times

© 00 N o g B~ W N

change names of user-definable reg-
isters

If privilege_ID is not one of the values listed above, USRPRV% generates an error.

Page 97

U.P.M.A.C.S. SCL Language Reference Function Reference

B The PVAR Function

Gets the value of a numerical variable of the parent program.

Syntax:
PVAR(var_name$)

Parameters:
var_name$: the name of the variable

The parent program is the program that called this program using the CALL, DRVCALL, or
CALLRMT command.

PVAR cannot be used to access array elements.

If var_name$ is not a valid name for a numerical variable, or if it is the name of a re-
served SCL keyword, PVAR generates an error.

If the variable specified by var_name$ is an array, PVAR generates an error.

This function is only available within child programs.

B The PVARS$ Function

Gets the value of a string variable of the parent program.

Syntax:
PVAR$(var_name$)

Parameters:
var_name$: the name of the variable

The parent program is the program that called this program using the CALL, DRVCALL, or
CALLRMT command.

PVAR$ cannot be used to access array elements.

If var_name$ is not a valid name for a string variable, or if it is the hame of a reserved SCL
keyword, PVARS$ generates an error.

If the variable specified by var_name$ is an array, PVAR$ generates an error.

This function is only available within child programs.

B The PVAR% Function

Gets the value of a Boolean variable of the parent program.

Syntax:
PVAR%(var_name$)

Parameters:
var_name$: the name of the variable

The parent program is the program that called this program using the CALL, DRVCALL, or
CALLRMT command.

Page 98

U.P.M.A.C.S. SCL Language Reference Function Reference

PVAR% cannot be used to access array elements.

If var_name$ is not a valid name for a Boolean variable, or if it is the name of a reserved
SCL keyword, PVAR% generates an error.

If the variable specified by var_name$ is an array, PVAR% generates an error.

This function is only available within child programs.

Special Purpose Functions

B The DRVPRM Function

Returns the value of a digital or analog parameter of the device that the program be-
long to.

Syntax:
DRVPRM(tag$)

Parameters:
tag$: the tag of the parameter

DRVPRM retrieves the value of a digital or analog device driver parameter. You can use
this function to get the address of the device that the program belongs to, for example.

Use DRVPRM$ to access string parameters, and DRVPRM% to access bistate parameters.
You can also use DRVPRM$ to access the name of a digital parameter’s value.

if tag$ is not the tag of a digital or analog parameter of the device driver the program
belong to, DRVPRM generates an error.

This function is only available within device driver programs.

B The DRVPRM$ Function

Returns the value of a string parameter or the name of the value of a digital parameter
of the device that the program belong to.

Syntax:
DRVPRM$(tag$)

Parameters:
tag$: the tag of the parameter

DRVPRM$ retrieves the value of a string device driver parameter, or the name of the value
of a digital device driver parameter. You can use this function to get the address of the
device that the program belongs to, for example.

If tag$ is the tag of a digital parameter, but that parameter’s value has no name,
DRVPRM$ is an empty string.

Use DRVPRM to access analog parameters, and DRVPRM% to access bistate parameters.
You can also use DRVPRM to access the value of a digital parameter as a number.

Page 99

U.P.M.A.C.S. SCL Language Reference Function Reference

if tag$ is not the tag of a string or digital parameter of the device driver the program be-
long to, DRVPRM$ generates an error.

This function is only available within device driver programs.

B The DRVPRM Function

Returns the value of a bistate parameter of the device that the program belong to.

Syntax:
DRVPRM%(tag$)

Parameters:
tag$: the tag of the parameter

DRVPRM% retrieves the value of a bistate device driver parameter. DRVPRMY% is true if the
parameter is ON, and false if it is OFF. You can use this function to get options of the de-
vice that the program belong to, for example.

Use DRVPRM to access digital or analog parameters, and DRVPRM$ to access digital pa-
rameters. You can also use DRVPRM$ to access the name of a digital parameter’s value.

if tag$ is not the tag of a bistate parameter of the device driver the program belong to,
DRVPRM% generates an error.

This function is only available within device driver programs.

B The BUFFER Function

Gets a single data buffer byte as a number.

Syntax:
BUFFER(n)

Parameters:
n: the 1-based index of the byte

BUFFER retrieves single bytes from the data that is to be evaluated. Use the BUFFERS re-
served variable to retrieve the entire buffer as a string.

The first byte in the buffer has index 1. If n is greater than the number of bytes in the
buffer, BUFFER returns -1.

if nis smaller or equal to 0, BUFFER generates an error.

This function is only available within programs for processor sources or checksumes.

B The TRIGGERPRM Function

Returns the value of a digital or analog parameter of the serial data object whose value
this program is determining.

Syntax:
TRIGGERPRM(tag$)

Page 100

U.P.M.A.C.S. SCL Language Reference Function Reference

Parameters:
tag$: the tag of the parameter

TRIGGERPRM is used in processor and summary sources to retrieve the value of a digital or
analog parameter of the data object in whose source this program is used.

Use TRIGGERPRMS$ to access string parameters, and TRIGGERPRM% to access bistate pa-
rameters. You can also use TRIGGERPRM$ to access the name of a digital parameter’s
value.

Use the TRIGGERS reserved variable to access the name of the data object.

if tag$ is not the tag of a digital or analog parameter of the data object this program is
evaluating, TRIGGERPRM generates an error.

This function is only available programs for processor and summary sources.

B The TRIGGERPRMS$ Function
Returns the value of a string parameter or the name of the value of a digital parameter
of the serial data object whose value this program is determining.

Syntax:
TRIGGERPRM$(tag$)

Parameters:
tag$: the tag of the parameter

TRIGGERPRM$ is used in processor and summary sources to retrieve the value of a string
parameter or the name of the value of a digital parameter of the data object in whose
source this program is used.

If tag$ is the tag of a digital parameter, but that parameter’s value has no name,
TRIGGERPRM$ is an empty string.

Use TRIGGERPRM to access analog parameters, and TRIGGERPRM% to access bistate pa-
rameters. You can also use TRIGGERPRM to access the value of a digital parameter as a
number.

Use the TRIGGERS reserved variable to access the name of the data object.

if tag$ is not the tag of a string or digital parameter of the data object this program is
evaluating, TRIGGERPRM$ generates an error.

This function is only available programs for processor and summary sources.

B The TRIGGERPRM% Function

Returns the value of a bistate parameter of the serial data object whose value this pro-
gram is determining.

Syntax:
TRIGGERPRM%(tag$)

Parameters:
tag$: the tag of the parameter

Page 101

U.P.M.A.C.S. SCL Language Reference Function Reference

TRIGGERPRM% is used in processor and summary sources to retrieve the value of a bistate
parameter of the data object in whose source this program is used. TRIGGERPRM% is true
if the parameter is ON, and false if it is OFF.

Use TRIGGERPRM to access digital or analog parameters, and TROGGERPRM$ to access
digital parameters. You can also use TRIGGERPRM$ to access the name of a digital pa-
rameter’s value.

Use the TRIGGERS$ reserved variable to access the name of the device object.

if tag$ is not the tag of a bistate parameter of the data object this program is evaluat-
ing, TRIGGERPRM generates an error.

This function is only available programs for processor and summary sources.

B The RTSPRM$ Function

returns an RTS parameter.

Syntax:
RTSPRM$(n)

Parameters:
n: the index of the parameter

The first parameter in has index 1. If n is greater than the number of parameters, RTSPRM$
returns an empty string.

if nis smaller or equal to 0, RTSPRM$ generates an error.

This function is only available within RTS controls.

Legacy Object Functions

B The MSGENABLED% Function

Determines if a legacy device driver message is enabled.

Syntax:

MSGENABLED%(port_tag$,device_tag$,message_tag$)

Parameters:

port_tag$: the tag of the serial port the message’s device is attached to
device_tag$: the tag of the device of the message

message_tag$: the tag of the message

MSGENABLEDY% is true if the message is enabled, false if it is disabled.

If port_tag$ is not the tag of a serial port, device_tag$ is not the tag of a device on the
port that uses a legacy device driver, or message_tag$ is not the tag of a message in
that driver, MSGENABLED% generates an error.

Page 102

U.P.M.A.C.S. SCL Language Reference Function Reference

B The PARAM Function

Returns the value of a legacy parameter as a number.

Syntax:
PARAM(tag$)

Parameters:
tag$: the tag of the parameter

PARAM returns a number written out in decimal form in the parameter’s value.

PARAM ignores any characters in the value that appear after the number. If the value
does not contain a number, or if there are characters other than spaces before the
number, PARAM returns 0.

If the parameter has never been set, PARAM uses its default value.

If tag$ is not the tag of a parameter, PARAM generates an error.

B The PARAMS$ Function

Returns the value of a legacy parameter as a string.

Syntax:
PARAM$S (tag$)

Parameters:
tag$: the tag of the parameter

PARAM$ returns an exact copy of the value of the parameter. If the parameter has never
been set, PARAMS$ returns its default value.

If tag$ is not the tag of a parameter, PARAM$ generates an error.

B The PARAM% Function

Returns the value of a legacy parameter as a Boolean value.

Syntax:
PARAM% (tag$)

Parameters:
tag$: the tag of the parameter

PARAMY% returns true if the parameter’s value is “ON”, otherwise, false. PARAMY% is not case
sensitive, it returns true for “on”, “On”, and “oN” as well.

If the parameter has never been set, PARAM% uses its default value.

If tag$ is not the tag of a parameter, PARAM% generates an error.

Page 103

U.P.M.A.C.S. SCL Language Reference

Function Reference

Obsolete Functions

These functions are obsolete and should not be used:

V V. V VYV V VYV V

The MITEQS$ Function (Use the PRNCHKSUM$ function instead.)
The LEFMT$ Function (Use the HILOFMT$ function instead.)
The BEFMT$ Function (Use the LOHIFMTS function instead.)
The SLEVAL Function (Use the SHILOVAL function instead.)
The SBEVAL Function (Use the SLOHIVAL function instead.)
The LEVAL Function (Use the HILOVAL function instead.)

The BEVAL Function (Use the LOHIVAL function instead.)

Page 104

U.P.M.A.C.S. SCL Language Reference Command Reference

COMMAND REFERENCE

Flow Control Commands

B The GOTO Command

Syntax:
GOTO(line_number)

Arguments:
line_number: the line number

If 1ine_number is not an existing line number, GOTO generates an error.

B The GOSUB Command

Jumps to a subroutine.

Syntax:
GosuB(line_number)

Arguments:
l1ine_number: the line number at which the subroutine starts

If line_number is not an existing line number, GOSUB generates an error.

B The ON..GOTO Command

Jumps to one of a list of line numbers, depending on the value of an index.

Syntax:
ON index GOTO line_number_1, line_number_2, line_number_3, etc.

Arguments:
index: the index of the line number to jump to

line_number_1, etc.the line numbers

You can specify any number of line numbers. If index is 1, ON..GOTO jumps to
line_number_1, if index is 2, it jumps to line_number_2, if index is 3, it jumps to
line_number_3, and so on. If index is smaller than one, greater than the number of line
numbers specified, or not an integer, ON..GOTO does not jump, and execution continues
at the next statement.

If the number at position index is not an existing line number, ON. _.GOTO generates an
error.

Page 105

U.P.M.A.C.S. SCL Language Reference Command Reference

B The ON..GOSUB Command

Jumps to one of a list of subroutines, depending on the value of an index.

Syntax:
ON index GOSUB line _number_1, line_number_2, line_number_ 3, etc.

Arguments:
index: the index of the line number to jump to

line_number_1, etc.the line numbers at which the subroutines start

You can specify any number of line numbers. If index is 1, ON..GOSUB jumps to
line_number_1, if index is 2, it jumps to line_number_2, if index is 3, it jumps to
line_number_3, and so on. If index is smaller than one, greater than the number of line
numbers specified, or not an integer, ON..GOSUB does not jump, and execution continues
at the next statement.

If the number at position index is not an existing line number, ON. .GOSUB generates an
error.

B The RETURN Command

Returns from a subroutine.

Syntax:
RETURN

If execution is not within a subroutine, RETURN generates an error.

B The IF Command

Executes a single command or a block of code only if a Boolean expression is true.

Syntax:
IF condition% THEN command

or
IF condition% THEN

Arguments:

condition%: the Boolean expression

command: the command to execute if condition% is true

The first syntax variant is used for single command conditions. The command will only be
executed if condition% evaluates to true.

The second syntax variant starts an 1F-THEN-ENDIF block. An IF-THEN-ENDIF block al-
lows you to specify a block of commands and assignments that will only be executed if
the Boolean expression is true. The block is terminated with the ENDIF keyword:

IF condition% THEN
command 1
command 2

Page 106

U.P.M.A.C.S. SCL Language Reference Command Reference

command 3

etc.
ENDIF

The commands will only be executed if condition% evaluates to true.

Note how command 1 is nhot on the same line as the THEN keyword. If you place the
command on the same line, you must separate it from the THEN keyword using a colon,
or the parser will interpret it as a single command condition.

See Conditional Statements on page 19 for details.

B The ELSEIF Command

Executes a block of code only if a Boolean expression is true, and a previous conditional
statement was false.

Syntax:
ELSEIF condition% THEN

Arguments:
condition%: the Boolean expression

ELSEIF starts an additional block of commands and assignments with an additional
condition within an IF-THEN-ENDIF block:

IF condition_1% THEN
...command 1
...command 2
...command 3

etc.
ELSEIF condition_2% THEN

. ..command 4

...command 5

...command 6
etc.

ENDIF
If condition_1%is true, commands 1, 2, 3, etc. will be executed.

If condition_1% is false, but condition_2% is true, commands 4, 5, 6, etc. will be exe-
cuted.

You can have any number of ELSEIF blocks within an 1F-THEN-ENDIF block. You can
also combine ELSEIF and ELSE blocks.

See Conditional Statements on page 19 for details.

B The ELSE Command

Executes a block of code only if a previous conditional statement was false.

Page 107

U.P.M.A.C.S. SCL Language Reference Command Reference

Syntax:

ELSE

ELSE specifies a second block of commands and assignments in an IF-THEN-ENDIF
block that will be executed if the IF condition is false:

IF condition% THEN
...command 1
...command 2
...command 3

etc.
ELSE

. ..command 4
...command 5
. ..command 6

etc.
ENDIF

The commands 1, 2, 3, etc. will be executed if condition% evaluates to true. If
condition% is false, commands 4, 5, 6, etc. will be executed instead.

See Conditional Statements on page 19 for details.

B The ENDIF Command

Ends an IF-THEN-ENDIF block.

Syntax:
ENDIF

See Conditional Statements on page 19 for details.

B The WHILE Command

Starts a WHILE-DO loop.

Syntax:
WHILE continue_contition% DO command

or
WHILE continue_contition% DO

Arguments:
continue_condition%: the Boolean expression that controls the execution of the loop

The first syntax variant is used for a single command loop. The command will be exe-
cuted as long as continue_contition% remains true.

The second syntax variant is used to start a WHILE-DO-ENDDO block:

WHILE continue_contition% DO
command 1
command 2

Page 108

U.P.M.A.C.S. SCL Language Reference Command Reference

command 3

etc.
ENDDO

Note how the first command in the WHILE-DO-ENDDO block is not on the same line as the
DO keyword. If you place them on the same line, you must separate them using a colon,
or the parser will interpret it as a single command loop.

If continue_contition% is false initially, the command or commands are never exe-
cuted.

See Loops on page 22 for details.

B The ENDDO Command

Ends a WHILE-DO-ENDO block.

Syntax:
ENDDO

See Loops on page 22 for details.

B The REPEAT Command

Starts a REPEAT-UNTIL loop.

Syntax:
REPEAT

REPEAT starts a REPEAT-UNTIL loop:

REPEAT
command 1
command 2
command 3

etc.
UNTIL stop_condition%

Everytime the program reaches the UNTIL statement, it evaluates stop_condition%. If
stop_contition% is false, it jumps back to the REPEAT statement. If stop_condition% is
true, it goes on to the next command or assignment after the UNTIL.

See Loops on page 22 for details.

B The UNTIL Command

Ends a REPEAT-UNTIL loop.

Syntax:
UNTIL stop_condition%

Arguments:
stop_condition%: the Boolean expression that controls the execution of the loop

Page 109

U.P.M.A.C.S. SCL Language Reference Command Reference

See Loops on page 22 for details.

B The FOR Command

Start a FOR-NEXT loop.

Syntax:
FOR counter

initial_value TO final_value

or
FOR counter = initial_value TO final_value STEP step_size
Arguments:

counter: the variable used to count

initial_value: the initial value of the variable

final_value: the value to which to count

step_size: the increments in which to count

A FOR-NEXT loop allows you to specify a block that will be executed a specific number
of times. This is done by “counting” from one number to another. You must specify a nu-
merical variable or array element that the program uses to count. a simple FOR-NEXT
loop looks like this:
FOR counter = initial _value TO final _value STEP step_size

command 1

command 2

command 3

etc.
NEXT counter

(You can also just write NEXT instead of NEXT counter)

The program will start “counting” by setting counter to initial_value. It will then exe-
cute the block of commands. Once it reaches the NEXT statement, it will add step_size
to counter and execute the block again. If you do not specify a step size, the program
will count in increments of 1 or -1, depending on whether final _value or
initial_value is greater.

The block wil be executed once with counter set to each value between
initial_value and final _value, inclusive. You can, of course, access counter within
the block like any other variable.

If the sign of step_size would cause the program to count in the wrong direction (i.e.
away from final_value instead of towards it), the block of commands is executed
once with counter set to initial_value.

After the loop is finished, counter will be one step-size beyond the value it had when the
loop last executed. For the statement

FOR counter = 2.1 TO 8.5

counter will have the value 9.1 after the loop is done.

If step_size is 0, the parser generates an error.

Page 110

U.P.M.A.C.S. SCL Language Reference Command Reference

See Loops on page 22 for details.

B The NEXT Command

Ends a FOR-NEXT loop.

Syntax:
NEXT

or

NEXT counter

Arguments:
counter: the variable used in the FOR statement

If the variable is not the same as that specified in the last FOR statement, the parse gen-
erates an error.

See Loops on page 22 for details.

B The END Command

Ends the program.

Syntax:
END

User Message Commands

B The PROMPT Command

Appends text to the internally maintained output buffer.

Syntax:
PROMPT list of expressions

See Messages to the User on page 25 for details on the output buffer.

PROMPT is followed by a list of expressions of any type (nhumerical, string, or Boolean),
separated by commas or semicolons. String expressions are placed into the output buffer
directly. Numbers are written in decimal format, using exponential notation whenever
necessary. Boolean values are written as “true” or “false.”

Expressions separated by a semicolon are placed immediately next to each other, ex-
pressions separated by a comma in the list are separated by a tab in the buffer.

PROMPT places the expressions of each PROMPT command together on one line. The ex-
pressions of the next PROMPT command will be placed on a separate line, unless you do
one of the following:

To place the output of the next PROMPT command immediately after the output of this
one, put a semicolon (;) at the end of this PROMPT command.

Page 111

U.P.M.A.C.S. SCL Language Reference Command Reference

To place the output of the next PROMPT command on the same line as the output of this
one but separated by a tab, put a comma at the end of this PROMPT command.

This command is not available within programs for sources, checksums, and SABus re-
sponse data, programs for SABus commandes, or RTS controls.

B The INFO Command

Displays the internally maintained output buffer in a message window, optionally ap-
pending additional expressions.

Syntax:
INFO

or
INFO list of expressions
See Messages to the User on page 25 for details on the output buffer.

INFO may be followed by a list of expressions of any type (numerical, string, or Boolean),
separated by commas or semicolons, which will be placed into the output buffer. String
expressions are placed into the output buffer directly. Numbers are written in decimal
format, using exponential notation whenever necessary. Boolean values are written as
“true” or “false.”

Expressions separated by a semicolon are placed immediately next to each other, ex-
pressions separated by a comma in the list are separated by a tab in the buffer.

The INFO dialog has only an OK button. The output buffer is emptied by the INFO com-
mand.

The INFO dialog has a different icon than the PRINT and ERRMSG commands, and Win-
dows plays a different sound. Please refer to When to Use Which Command in Messages
to the User on page 26 for information on when to use which command.

BExample:

PROMPT "'The world will end "
INFO "in ';2*15;" days."

displays the following window:

Example Program

@ The warld will end in 30 days.

This command is not available within programs for sources, checksums, and SABus re-
sponse data, programs for SABus commands, or RTS controls.

Page 112

U.P.M.A.C.S. SCL Language Reference Command Reference

B The PRINT Command

Displays the internally maintained output buffer in a message window, optionally ap-
pending additional expressions.

Syntax:
PRINT

or
PRINT list of expressions
See Messages to the User on page 25 for details on the output buffer.

PRINT may be followed by a list of expressions of any type (numerical, string, or Boolean),
separated by commas or semicolons, which will be placed into the output buffer. String
expressions are placed into the output buffer directly. Numbers are written in decimal
format, using exponential notation whenever necessary. Boolean values are written as
“true” or “false.”

Expressions separated by a semicolon are placed immediately next to each other, ex-
pressions separated by a comma in the list are separated by a tab in the buffer.

The PRINT dialog has only an OK button. The output buffer is emptied by the PRINT
command.

The PRINT dialog has a different icon than the INFO and ERRMSG commands, and Win-
dows plays a different sound. Please refer to When to Use Which Command in Messages
to the User on page 26 for information on when to use which command.

Example:

PROMPT **Sumer is icumen in"
PROMPT *"Lhude sing cu-cu"
PRINT

displays the following window:

Sumer is icurmen in
Lhude sing cu-cu

Note: If PRINT is terminated with a semicolon or comma, it acts like the PROMPT
command, and will not output anything to the screen. This usage of PRINT is ob-
solete and should not be used.

This command is not available within programs for sources, checksums, and SABus re-
sponse data, programs for SABus commands, or RTS controls.

Page 113

U.P.M.A.C.S. SCL Language Reference Command Reference

B The ERRMSG Command

Displays the internally maintained output buffer in a message window, optionally ap-
pending additional expressions.

Syntax:
ERRMSG

or
ERRMSG list of expressions
See Messages to the User on page 25 for details on the output buffer.

ERRMSG may be followed by a list of expressions of any type (numerical, string, or Boo-
lean), separated by commas or semicolons, which will be placed into the output buffer.
String expressions are placed into the output buffer directly. Numbers are written in
decimal format, using exponential notation whenever necessary. Boolean values are
written as “true” or “false.”

Expressions separated by a semicolon are placed immediately next to each other, ex-
pressions separated by a comma in the list are separated by a tab in the buffer.

The ERRMSG dialog has only an OK button. The output buffer is emptied by the ERRMSG
command.

The ERRMSG dialog has a different icon than the INFO and PRINT commands, and Win-
dows plays a different sound. Please refer to When to Use Which Command in Messages
to the User on page 26 for information on when to use which command.

Example:

ERRMSG "1°m sorry, Dave, | can’t do that."

displays the following window:

Example Program

Q I'm zarmy, Dave, | can't do that.

This command is not available within programs for sources, checksums, and SABus re-
sponse data, programs for SABus commandes, or RTS controls.

B The CONFIRM Command

Displays the internally maintained output buffer in a dialog, giving the user the option to
proceed or cancel.

Syntax:
CONFIRM

or
CONFIRM result _variable%

Page 114

U.P.M.A.C.S. SCL Language Reference Command Reference

Arguments:
result variable%: a variable thatisto receive the user’s choice

See Messages to the User on page 25 for details on the output buffer.

The CONFIRM dialog has an OK and a Cancel button. The output buffer is emptied by the
CONFIRM command.

If you do not specify a result variable, CONFIRM will end the program if the user chooses
to cancel the operation. If you do specify a result variable, it will be set to true if the user
chooses to proceed, and false if he chooses to cancel.

This command is not available within programs for sources, checksums, and SABus re-
sponse data, programs for SABus commands, or RTS controls.

B The ASK Command

Displays the internally maintained output buffer in a dialog, giving the user the option to
answer “Yes” or “No.”

Syntax:
ASK

or

ASK result_variable%

Arguments:
result_variable%: a variable thatisto receive the user’s choice

See Messages to the User on page 25 for details on the output buffer.

The ASK dialog has a Yes and a No button. The output buffer is emptied by the ASK
command.

If you do not specify a result variable, ASK will end the program if the user answers “No.” If
you do specify a result variable, it will be set to true if the user answers “Yes,” and false if
he answers “No.”

Page 115

U.P.M.A.C.S. SCL Language Reference Command Reference

Example:

PROMPT *"Will you marry me?"
ASK

displays the following window:

Example Program

@ Will you mary me?
Ho |

This command is not available within programs for sources, checksums, and SABus re-
sponse data, programs for SABus commands, or RTS controls.

Dialog Commands

B The DIALOG Command

Shows the current dialog.

Syntax:
DIALOG

or

DIALOG result _variable

or

DIALOG result_variable,line_number

Arguments:
result variable: the result variable
line_number: the line number where the button callback routine starts

DIALOG shows the dialog previously constructed using dialog commands. See Dialogs on
page 28 for more details. DIALOG deletes the current dialog.

If you specify a result variable, the variable will contain the button number of the button
the user pressed to close the dialog.

If you do not specify a result variable, the program will be aborted if the user presses the
cancel button. If the user presses any other button, the program will continue.

If you specify a result variable, you can also specify a button callback line number.

Whenever the user presses a button other than the Cancel button, SCL jumps to the line
number as if it encountered a GOSUB command. You can look at the result variable to
see what button the user pressed. All the variables associated with the items are up-
dated to reflect the user’s entries.

You return from the button callback using the RETURN command.

Page 116

U.P.M.A.C.S. SCL Language Reference Command Reference

If you want the dialog to be closed when you return, do not modify the result variable. If
you want the dialog to stay up, set the result variable to 0. If you set the result variable to
any other value but 0, the dialog will be closed, and the result variable will retain that
value when the program continues after the DIALOG statement.

If you set the result variable to 0, all dialog items will be updated to reflect any changes
you made in their variables, and the dialog will stay up.

The button callback will be called again once the user presses another button.
The button callback is not called if the user presses the Cancel button.
if ine_number is not an existing line number, DIALOG generates an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data, programs for SABus commandes, or RTS controls.

B The DLGTITLE Command

Set the title of the current dialog.

Syntax:
DLGTITLE title$

Arguments:
title$: the newtitle

Use DLGTITLE to show a custom title in the title bar of the dialog. Applies only to the dia-
log currently being constructed. If you do not call DLGTITLE for a particular dialog, the
title bar of the dialog will contain the name of the program.

This command is not available within programs for sources, checksums, and SABus re-
sponse data, programs for SABus commands, or RTS controls.

B The DLGTEXT Command

Adds a static text field to the current dialog.

Syntax:
DLGTEXT list of expressions

Use DLGTEXT to add static text to a dialog. Static text cannot be edited by the user.

DLGTEXT is followed by a list of expressions of any type (numerical, string, or Boolean),
separated by commas or semicolons. String expressions are sent directly. Numbers are
sent in decimal format, using exponential notation whenever necessary. Boolean values
are sent as “true” or “false.”

Expressions separated by a semicolon are sent immediately next to each other, expres-
sions separated by a comma are sent with a tab separating them.

Unlike the PROMPT command, you must not end the list of expressions with a semicolon or
comma.

This command is not available within programs for sources, checksums, and SABus re-
sponse data, programs for SABus commands, or RTS controls.

Page 117

U.P.M.A.C.S. SCL Language Reference Command Reference

B The DLGLINE Command

Adds a horizontal separator line to the current dialog.

Syntax:
DLGLINE

This command is not available within programs for sources, checksums, and SABus re-
sponse data, programs for SABus commands, or RTS controls.

B The STREDIT Command

Adds a text entry field to the current dialog. The field does not allow an empty entry.

Syntax:
STREDIT prompt$,string_variable$

or
STREDIT prompt$,string_variable$,width
or

STREDIT prompt$,string_variable$,units$

or
STREDIT prompt$,string_variable$,units$,width
Arguments:

prompt$: the prompt

string_variable$: the variable associated with the edit field
unitss: a string representing the units

width: the width of the entry field

Use this command to add an edit field that lets the user enter a non-empty string.

prompt$ is a string that tells the user what he should enter in the edit field. You can have
three types of prompts:

» To have no prompt, use an empty string for prompt$.

» To have the prompt on a separate line, use a string that end with a return charac-
ter (RET$)

» To have the prompt on the same line and to the left of the edit field, use a string
that does not end in a return character

To assign a keyboard shortcut to the edit field, put an underscore character (
the appropriate character in the prompt.

) after

string_variable$ has to be a string variable. The edit field is initialized with the content
of the variable, and the variable is set to the user entry when the user presses a button
other than the Cancel button.

Page 118

U.P.M.A.C.S. SCL Language Reference Command Reference

units$ is optional string that is placed to the right of the edit field. You can use it to tell
the user what units the data that he entersis in.

width is an optional width of the edit field. If you specify a width, the edit field will hold
approximately that many characters. Please note that since not all characters are the
same width, how many characters will fit in an edit field depends greatly on what char-
acters they are. If you don’t specify a width, the edit field will extend across the entire
dialog.

STREDIT will disable all buttons added with the BUTTON command if it contains no char-
acters. To allow the user to leave the edit field blank, use the STREDITO command.

If the user is supposed to enter a password, use the PWDEDIT command instead. The
PWDEDIT command does not show characters as they are typed, which is necessary to
hide the password from casual onlookers.

If width is negative or zero, or if it contains fractions, STREDIT generates an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data, programs for SABus commandes, or RTS controls.

B The STREDITO Command

Adds a text entry field to the current dialog. The field allows an empty entry.

Syntax:
STREDITO prompt$,string_variable$

or
STREDITO prompt$,string_variable$,width
or
STREDITO prompt$,string_variable$,units$

or

STREDITO prompt$,string_variable$,units$,width
Arguments:

prompt$: the prompt

string_variable$: the variable associated with the edit field
unitss: a string representing the units

width: the width of the entry field

Page 119

U.P.M.A.C.S. SCL Language Reference Command Reference

Use this command to add an edit field that lets the user enter a string that may be
empty.

prompt$ is a string that tells the user what he should enter in the edit field. You can have
three types of prompts:

» To have no prompt, use an empty string for prompt$.

» To have the prompt on a separate line, use a string that end with a return charac-
ter (RET$)

» To have the prompt on the same line and to the left of the edit field, use a string
that does not end in a return character

To assign a keyboard shortcut to the edit field, put an underscore character (“_") after
the appropriate character in the prompt.

string_variable$ has to be a string variable. The edit field is initialized with the content
of the variable, and the variable is set to the user entry when the user presses a button
other than the Cancel button.

units$ is optional string that is placed to the right of the edit field. You can use it to tell
the user what units the data that he entersis in.

width is an optional width of the edit field. If you specify a width, the edit field will hold
approximately that many characters. Please note that since not all characters are the
same width, how many characters will fit in an edit field depends greatly on what char-
acters they are. If you don’t specify a width, the edit field will extend across the entire
dialog.

STREDITO allows the user to leave the edit field blank. If you want to force the user to en-
ter something in the field, use the STREDIT command.

If the user is supposed to enter a password, use the PWDEDITO command instead. The
PWDEDITO command does not show characters as they are typed, which is necessary to
hide the password from casual onlookers.

If width is negative or zero, or if it contains fractions, STREDITO generates an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data, programs for SABus commandes, or RTS controls.

Page 120

U.P.M.A.C.S. SCL Language Reference Command Reference

B The PWDEDIT Command

Adds a password entry field to the current dialog. The field does not allow an empty en-
try.

Syntax:
PWDEDIT prompt$,string_variable$

or
PWDEDIT prompt$,string_variable$,width
or

PWDEDIT prompt$,string_variable$,units$

or
PWDEDIT prompt$,string_variable$,units$,width
Arguments:

prompt$: the prompt

string_variable$: the variable associated with the edit field
unitss$: a string representing the units

width: the width of the entry field

Use this command to add an edit field that lets the user enter a non-empty password
string.

prompt$ is a string that tells the user what he should enter in the edit field. You can have
three types of prompts:

» To have no prompt, use an empty string for prompt$.

» To have the prompt on a separate line, use a string that end with a return charac-
ter (RETS)

» To have the prompt on the same line and to the left of the edit field, use a string
that does not end in a return character

To assign a keyboard shortcut to the edit field, put an underscore character (
the appropriate character in the prompt.

) after

string_variable$ has to be a string variable. The edit field is initialized with the content
of the variable, and the variable is set to the user entry when the user presses a button
other than the Cancel button.

units$ is optional string that is placed to the right of the edit field. You can use it to tell
the user what units the data that he enters s in.

Page 121

U.P.M.A.C.S. SCL Language Reference Command Reference

width is an optional width of the edit field. If you specify a width, the edit field will hold
approximately that many characters. Please note that since not all characters are the
same width, how many characters will fit in an edit field depends greatly on what char-
acters they are. If you don’t specify a width, the edit field will extend across the entire
dialog.

PWDEDIT will disable all buttons added with the BUTTON command if it contains no char-
acters. To allow the user to leave the edit field blank, use the PNDEDITO command.

The PWDEDIT command shows characters as asterisks (“*”) as they are typed, which is
necessary to hide the password from casual onlookers. For regular string entry, use the
STREDIT command.

If width is negative or zero, or if it contains fractions, PNDEDIT generates an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data, programs for SABus commands, or RTS controls.

B The PWDEDITO Command

Adds a password entry field to the current dialog. The field allows an empty entry.

Syntax:
PWDEDITO prompt$,string_variable$

or
PWDEDITO prompt$,string_variable$,width
or
PWDEDITO prompt$,string_variable$,units$

or

PWDEDITO prompt$,string_variable$,units$,width
Arguments:

prompt$: the prompt

string_variable$: the variable associated with the edit field
unitss: a string representing the units

width: the width of the entry field

Use this command to add an edit field that lets the user enter a password string that may
be empty.

prompt$ is a string that tells the user what he should enter in the edit field. You can have
three types of prompts:

Page 122

U.P.M.A.C.S. SCL Language Reference Command Reference

» To have no prompt, use an empty string for prompt$.

» To have the prompt on a separate line, use a string that end with a return charac-
ter (RET$)

» To have the prompt on the same line and to the left of the edit field, use a string
that does not end in a return character

To assign a keyboard shortcut to the edit field, put an underscore character (*_") after
the appropriate character in the prompt.

string_variable$ has to be a string variable. The edit field is initialized with the content
of the variable, and the variable is set to the user entry when the user presses a button
other than the Cancel button.

units$ is optional string that is placed to the right of the edit field. You can use it to tell
the user what units the data that he entersisin.

width is an optional width of the edit field. If you specify a width, the edit field will hold
approximately that many characters. Please note that since not all characters are the
same width, how many characters will fit in an edit field depends greatly on what char-
acters they are. If you don’t specify a width, the edit field will extend across the entire
dialog.

PWDEDITO allows the user to leave the edit field blank. If you want to force the user to en-
ter a password in the field, use the PWDEDIT command.

The PWDEDITO command shows characters as asterisks (“*”) as they are typed, which is
necessary to hide the password from casual onlookers. For regular string entry, use the
STREDITO command.

If width is negative or zero, or if it contains fractions, PADEDITO generates an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data, programs for SABus commands, or RTS controls.

B The NUMEDIT Command

Adds a number entry field to the current dialog.

Syntax:
NUMEDIT prompt$,numerical_variable

Page 123

U.P.M.A.C.S. SCL Language Reference Command Reference

or
NUMEDIT prompt$,numerical_variable,width
or

NUMEDIT prompt$,numerical_variable,units$

or
NUMEDIT prompt$,numerical_variable,units$,width
Arguments:

prompt$: the prompt

numerical_variable: the variable associated with the edit field
unitss: a string representing the units

width: the width of the entry field

Use this command to add an edit field that lets the user enter a number.

prompt$ is a string that tells the user what he should enter in the edit field. You can have
three types of prompts:

» To have no prompt, use an empty string for prompt$.

» To have the prompt on a separate line, use a string that end with a return charac-
ter (RETS$)

» To have the prompt on the same line and to the left of the edit field, use a string
that does not end in a return character

To assign a keyboard shortcut to the edit field, put an underscore character (“_") after
the appropriate character in the prompt.

numerical_variable has to be a numerical variable. The edit field is initialized to the
value of the variable, and the variable is set to the user entry when the user presses a
button other than the Cancel button.

units$ is optional string that is placed to the right of the edit field. You can use it to tell
the user what units the data that he enters is in.

width is an optional width of the edit field. If you specify a width, the edit field will hold
approximately that many characters. Please note that since not all characters are the
same width, how many characters will fit in an edit field depends greatly on what char-

Page 124

U.P.M.A.C.S. SCL Language Reference Command Reference

acters they are. If you don’t specify a width, the edit field will extend across the entire
dialog.

NUMEDIT allows the user to enter any number. If you want to restrict the entry to numbers
without fractions, use the INTEDIT command.

If width is negative or zero, or if it contains fractions, NUMEDIT generates an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data, programs for SABus commands, or RTS controls.

B The INTEDIT Command

Adds an integer entry field to the current dialog. The entry field has a thumbwheel.

Syntax:
INTEDIT prompt$,numerical_variable

or
INTEDIT prompt$,numerical_variable,minimum

or

INTEDIT prompt$,numerical_variable,minimum,maximum

or

INTEDIT prompt$,numerical_variable,minimum,maximum,width
or

INTEDIT prompt$,numerical_variable,units$

or

INTEDIT prompt$,numerical_variable,units$,minimum

or

INTEDIT prompt$,numerical_variable,units$,minimum,maximum

or
INTEDIT prompt$,numerical_variable,units$,minimum,maximum,width
Arguments:

prompt$: the prompt

numerical_variable: the variable associated with the edit field

unitss$: a string representing the units

minimum: the lower limit of the thumbwheel

maximum: the upper limit of the thumbwheel

width: the width of the entry field

Use this command to add an edit field that lets the user enter a number without fractions.
The control has a thumbwheel to allow the user to easily increment and decrement the
value. A thumbwheel consists of two small arrows (one up and one down) at the right of
the edit field.

Page 125

U.P.M.A.C.S. SCL Language Reference Command Reference

Example:

Example Program

Flay lewel: m

prompt$ is a string that tells the user what he should enter in the edit field. You can have
three types of prompts:

» To have no prompt, use an empty string for prompt$.

» To have the prompt on a separate line, use a string that end with a return charac-
ter (RET$)

» To have the prompt on the same line and to the left of the edit field, use a string
that does not end in a return character

To assign a keyboard shortcut to the edit field, put an underscore character (*_") after
the appropriate character in the prompt.

numerical_variable has to be a numerical variable. The edit field is initialized to the
value of the variable, and the variable is set to the user entry when the user presses a
button other than the Cancel button.

units$ is optional string that is placed to the right of the edit field. You can use it to tell
the user what units the data that he enters is in.

minimum and maximum are the limits that the user can set the value to using the thumb-
wheel. If you do not specify one of the limits, the user can increase or decrease indefi-
nitely. Please note that the user can type any number he wants. minimum and maximum
only apply to the thumbwheel. INTEDIT does not guarantee than numerical _variable
will not be outside the specified range, you must check that yourself in the dialog button
callback routine.

width is an optional width of the edit field. If you specify a width, the edit field will be
wide enough to hold approximately that many characters, less the width of the thumb-
wheel. Please note that since not all characters are the same width, how many charac-
ters will fit in an edit field depends greatly on what characters they are. If you don’t spec-
ify a width, the edit field will extend across the entire dialog.

Page 126

U.P.M.A.C.S. SCL Language Reference Command Reference

INTEDIT only allows the user to enter numbers without fractions. If you want to enable
the user to enter any number, use the NUMEDIT command instead.

If the value of numerical_variable contains fractions, INTEDIT generates an error.
If maximum is less than minimum, INTEDIT generates an error.
If width is negative or zero, or if it contains fractions, INTEDIT generates an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data, programs for SABus commands, or RTS controls.

B The CHKBOX Command

Adds a check box to the current dialog.

Syntax:

CHKBOX Boolean_variable, label$

Arguments:

Boolean_variable: the variable associated with the check box
label$: the label of the check box

label$ is the text that appears next to the check box. To assign a keyboard shortcut to
the check box, put an underscore character (“_") after the appropriate character in the
prompt.

Boolean_variable has to be a Boolean variable. The check box is checked initially if

the value of the variable is true. The variable is set to true if the check box is checked
when the user presses a button other than the Cancel button, false otherwise.

Example:

CHKBOX A%,''C_heck me!™
CHKBOX A%,"'M_e too!™
CHKBOX C%,''Me t_hreel™
DIALOG

displays the following window:

Example Program E
[~ Check me!
[Me tool Careel |
[Me threel

This command is not available within programs for sources, checksums, and SABus re-
sponse data, programs for SABus commands, or RTS controls.

B The LIST Command

Adds an unsorted auto-width list to the current dialog. The list requires a user selection.

Page 127

U.P.M.A.C.S. SCL Language Reference Command Reference

Syntax:
LIST prompt$,numerical_variable

or
LIST prompt$,numerical_variable, iteml$, item2$, item3$, etc.

or
LIST prompt$,numerical_variable,height

or

LIST prompt$,numerical_variable,height, iteml$, item2$, item3$, etc.

Arguments:

prompt$: the prompt

numerical _variable: the variable associated with the list

height: the number of items the list can display without scrolling

iteml$, item2$, item3$, etc.:items to be placed in the list

Use this command to add a list that requires the user to select an item.

prompt$ is a string that tells the user what the selection in the list is for. The prompt is
placed immediately above the list. Use an empty string as the prompt if you do not want
a prompt.

To assigh a keyboard shortcut to the list, put an underscore character (
propriate character in the prompt.

) after the ap-

numerical_variable has to be a numerical variable. If the variable value is greater
than 0, the item with the corresponding number is selected initially. The variable value is
set to the number of the item selected when the user presses a button other than the
Cancel button.

The list will be at least wide enough to hold the longest of the items you add. To specify a
specific width for the list, use the, use the LISTW command.

height is an optional height of the edit field. If you specify a height, the list will be able to
show that many items at a time. The user can see additional items by scrolling down. If
you don’t specify a height, the list will be large enough to hold all the items.

You can specify any number of items to be placed in the list in the LIST command, or
you can add items later using the LITEM command.

LIST will disable all buttons added with the BUTTON command if no item is selected. To
allow the user to proceed without selecting an item, use the LISTO command.

If you want the items in the list to be sorted alphabetically, use the SLIST command.

Page 128

U.P.M.A.C.S. SCL Language Reference Command Reference

Example:

Example Program

Fleaze zelect a color: oK |

Catcel

International orange

If the value of numerical_variable is negative, or if it contains fractions, LIST gener-
ates an error.

If height is negative or zero, or if it contains fractions, LIST generates an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data, programs for SABus commands, or RTS controls.

B The LISTW Command

Adds an unsorted fixed-width list to the current dialog. The list requires a user selection.

Syntax:
LISTW prompt$,numerical_variable,width

or
LISTW prompt$,numerical_variable,width, iteml$, item2$, item3$, etc.

or
LISTW prompt$,numerical_variable,width,height

or

LISTW prompt$,numerical_variable,width,height, iteml$, item2$, item3$, etc.

Arguments:

prompt$: the prompt

numerical _variable: the variable associated with the list

width: the width of the list

height: the number of items the list can display without scrolling

iteml$, item2$, item3$, etc.:.items to be placed in the list

Use this command to add a list that requires the user to select an item.

prompt$ is a string that tells the user what the selection in the list is for. The prompt is
placed immediately above the list. Use an empty string as the prompt if you do not want
a prompt.

To assign a keyboard shortcut to the list, put an underscore character (“_") after the ap-
propriate character in the prompt.

numerical_variable has to be a numerical variable. If the variable value is greater
than 0, the item with the corresponding number is selected initially. The variable value is

Page 129

U.P.M.A.C.S. SCL Language Reference Command Reference

set to the number of the item selected when the user presses a button other than the
Cancel button.

width is the minimum width of the list box. The list will be wide enough for items with
about that many characters. Please note that since not all characters are the same
width, how many characters will fit in the list depends greatly on what characters they
are. Note also that the actual list may be wider (but never narrower) than the width you
specify, since lists always extend across the whole dialog. To calculate the width auto-
matically, use the LIST command

height is an optional height of the edit field. If you specify a height, the list will be able to
show that many items at a time. The user can see additional items by scrolling down. If
you don’t specify a height, the list will be large enough to hold all the items.

You can specify any number of items to be placed in the list in the LISTW command, or
you can add items later using the LITEM command.

LISTW will disable all buttons added with the BUTTON command if no item is selected. To
allow the user to proceed without selecting an item, use the LISTWO command.

If you want the items in the list to be sorted alphabetically, use the SLISTW command.

Example:

Example Program

Flease zelect a color: oK |

Cancel

Intermnational orange

If the value of numerical_variable is negative, or if it contains fractions, LISTW gener-
ates an error.

If width or height is negative or zero, or if it contains fractions, LISTW generates an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data, programs for SABus commands, or RTS controls.

B The LISTO Command

Adds an unsorted auto-width list to the current dialog. The list does not require a user se-
lection.

Syntax:
LISTO prompt$,numerical_variable

or
LISTO prompt$,numerical variable, iteml$, item2$, item3$, etc.

or
LISTO prompt$,numerical_variable,height

Page 130

U.P.M.A.C.S. SCL Language Reference Command Reference

or
LISTO prompt$,numerical_variable,height, iteml$, item2$, item3$, etc.

Arguments:

prompt$: the prompt

numerical_variable: the variable associated with the list

height: the number of items the list can display without scrolling

iteml$, item2$, item3$, etc..items to be placed in the list

Use this command to add a list that noes not requires the user to select an item.

prompt$ is a string that tells the user what the selection in the list is for. The prompt is
placed immediately above the list. Use an empty string as the prompt if you do not want
a prompt.

To assign a keyboard shortcut to the list, put an underscore character (“_") after the ap-
propriate character in the prompt.

numerical_variable has to be a numerical variable. If the variable value is greater
than 0, the item with the corresponding number is selected initially. The variable value is
set to the number of the item selected when the user presses a button other than the
Cancel button. If no item is selected, the value is set to 0.

The list will be at least wide enough to hold the longest of the items you add. To specify a
specific width for the list, use the, use the LISTWO command.

height is an optional height of the edit field. If you specify a height, the list will be able to
show that many items at a time. The user can see additional items by scrolling down. If
you don’t specify a height, the list will be large enough to hold all the items.

You can specify any number of items to be placed in the list in the LISTO command, or
you can add items later using the LITEM command.

L1STO does not require the user make a selection. If you want to force the user to select
an item, use the LIST command.

If you want the items in the list to be sorted alphabetically, use the SLISTO command.

BExample:

Example Program

Flease select a color: akK |
Cancel |

International orange

If the value of numerical_variable is negative, or if it contains fractions, LISTO gener-
ates an error.

If height is negative or zero, or if it contains fractions, LISTO generates an error.

Page 131

U.P.M.A.C.S. SCL Language Reference Command Reference

This command is not available within programs for sources, checksums, and SABus re-
sponse data, programs for SABus commands, or RTS controls.

B The LISTWO Command

Adds an unsorted fixed-width list to the current dialog. The list does not require a user se-
lection.

Syntax:
LISTWO prompt$,numerical_variable,width

or
LISTWO prompt$,numerical_variable,width, iteml$, item2$, item3$, etc.

or
LISTWO prompt$,numerical_variable,width,height

or
LISTWO prompt$,numerical_variable,width,height, iteml$, item2$, item3$, etc.
Arguments:

prompt$: the prompt

numerical_variable: the variable associated with the list

width: the width of the list

height: the number of items the list can display without scrolling

iteml$, item2$, item3$, etc.:.items to be placed in the list

Use this command to add a list that noes not requires the user to select an item.

prompt$ is a string that tells the user what the selection in the list is for. The prompt is
placed immediately above the list. Use an empty string as the prompt if you do not want
a prompt.

To assign a keyboard shortcut to the list, put an underscore character (
propriate character in the prompt.

) after the ap-

numerical_variable has to be a numerical variable. If the variable value is greater
than 0, the item with the corresponding number is selected initially. The variable value is
set to the number of the item selected when the user presses a button other than the
Cancel button. If no item is selected, the value is set to 0.

width is the minimum width of the list box. The list will be wide enough for items with
about that many characters. Please note that since not all characters are the same
width, how many characters will fit in the list depends greatly on what characters they
are. Note also that the actual list may be wider (but never narrower) than the width you
specify, since lists always extend across the whole dialog. To calculate the width auto-
matically, use the LISTO command

height is an optional height of the edit field. If you specify a height, the list will be able to
show that many items at a time. The user can see additional items by scrolling down. If
you don’t specify a height, the list will be large enough to hold all the items.

You can specify any number of items to be placed in the list in the LISTWO command, or
you can add items later using the LITEM command.

Page 132

U.P.M.A.C.S. SCL Language Reference Command Reference

LISTWO does not require the user make a selection. If you want to force the user to select
an item, use the LISTW command.

If you want the items in the list to be sorted alphabetically, use the SLISTWO command.

Example:

Example Program

Flease zelect a color: oK |

Cancel

Intermnational orange

If the value of numerical _variable is negative, or if it contains fractions, LISTWO gener-
ates an error.

If width or height is negative or zero, or if it contains fractions, LISTWO generates an er-
ror.

This command is not available within programs for sources, checksums, and SABus re-
sponse data, programs for SABus commands, or RTS controls.

B The SLIST Command

Adds a sorted auto-width list to the current dialog. The list requires a user selection.

Syntax:
SLIST prompt$,numerical_variable

or
SLIST prompt$,numerical_variable, iteml$, item2$, item3$, etc.

or
SLIST prompt$,numerical_variable,height

or

SLIST prompt$,numerical_variable,height, iteml$, item2$, item3$, etc.

Arguments:

prompt$: the prompt

numerical _variable: the variable associated with the list

height: the number of items the list can display without scrolling

iteml$, item2$, item3$, etc.:items to be placed in the list

Use this command to add a list that requires the user to select an item. The items will be
sorted alphabetically.

prompt$ is a string that tells the user what the selection in the list is for. The prompt is
placed immediately above the list. Use an empty string as the prompt if you do not want
a prompt.

Page 133

U.P.M.A.C.S. SCL Language Reference Command Reference

To assign a keyboard shortcut to the list, put an underscore character (“_") after the ap-
propriate character in the prompt.

numerical_variable has to be a numerical variable. If the variable value is greater
than 0, the item with the corresponding number is selected initially. The variable value is
set to the number of the item selected when the user presses a button other than the
Cancel button.

Note that the items are numbered according to the order in which you add them, not
the order in which they appear in the list. if numerical_variable is one, iteml$ will be
selected initially. Since the list was sorted, however, 1teml$ might not be the first item in
the list in the dialog. If the user selects 1tem2$, numerical_variable will be set to two,
regardless of where item2$ appears in the sorted list.

The list will be at least wide enough to hold the longest of the items you add. To specify a
specific width for the list, use the, use the SLI1STW command.

height is an optional height of the edit field. If you specify a height, the list will be able to
show that many items at a time. The user can see additional items by scrolling down. If
you don’t specify a height, the list will be large enough to hold all the items.

You can specify any number of items to be placed in the list in the SLIST command, or
you can add items later using the LITEM command.

SLIST will disable all buttons added with the BUTTON command if no item is selected. To
allow the user to proceed without selecting an item, use the SLISTO command.

SLIST sorts all items alphabetically. If you want the items in the list to appear in the order
you add them, use the LIST command.

Example:

Example Program

Fleaze zelect a colour: oK |

Fuchsia Cancel
International arange

If the value of numerical_variable is negative, or if it contains fractions, SLIST gener-
ates an error.

If height is negative or zero, or if it contains fractions, SLIST generates an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data, programs for SABus commands, or RTS controls.

B The SLISTW Command

Adds a sorted fixed-width list to the current dialog. The list requires a user selection.

Syntax:
SLISTW prompt$,numerical_variable,width

Page 134

U.P.M.A.C.S. SCL Language Reference Command Reference

or
SLISTW prompt$,numerical_variable,width,iteml$, item2$, item3$, etc.

or
SLISTW prompt$,numerical_variable,width,height

or

SLISTW prompt$,numerical_variable,width,height,iteml$, item2$, item3$, etc.

Arguments:

prompt$: the prompt

numerical_variable: the variable associated with the list

width: the width of the list

height: the number of items the list can display without scrolling

iteml$, item2$, item3$, etc.:items to be placed in the list

Use this command to add a list that requires the user to select an item. The items will be
sorted alphabetically.

prompt$ is a string that tells the user what the selection in the list is for. The prompt is
placed immediately above the list. Use an empty string as the prompt if you do not want
a prompt.

To assign a keyboard shortcut to the list, put an underscore character (
propriate character in the prompt.

) after the ap-

numerical_variable has to be a numerical variable. If the variable value is greater
than 0, the item with the corresponding number is selected initially. The variable value is
set to the number of the item selected when the user presses a button other than the
Cancel button.

Note that the items are numbered according to the order in which you add them, not
the order in which they appear in the list. if numerical_variable is one, iteml$ will be
selected initially. Since the list was sorted, however, 1teml$ might not be the first item in
the list in the dialog. If the user selects 1tem2$, numerical_variable will be set to two,
regardless of where item2$ appears in the sorted list.

width is the minimum width of the list box. The list will be wide enough for items with
about that many characters. Please note that since not all characters are the same
width, how many characters will fit in the list depends greatly on what characters they
are. Note also that the actual list may be wider (but never narrower) than the width you
specify, since lists always extend across the whole dialog. To calculate the width auto-
matically, use the SLIST command

height is an optional height of the edit field. If you specify a height, the list will be able to
show that many items at a time. The user can see additional items by scrolling down. If
you don’t specify a height, the list will be large enough to hold all the items.

You can specify any number of items to be placed in the list in the SLISTW command, or
you can add items later using the LITEM command.

SLISTW will disable all buttons added with the BUTTON command if no item is selected. To
allow the user to proceed without selecting an item, use the SLISTWO command.

SLISTW sorts all items alphabetically. If you want the items in the list to appear in the or-
der you add them, use the LISTW command.

Page 135

U.P.M.A.C.S. SCL Language Reference Command Reference

Example:

Example Program

Fleaze zelect a colour: oK |

Fuchsia Cancel
International arange
Lavender

If the value of numerical _variable is negative, or if it contains fractions, SLISTW gener-
ates an error.

If width or height is negative or zero, or if it contains fractions, SLISTW generates an er-
ror.

This command is not available within programs for sources, checksums, and SABus re-
sponse data, programs for SABus commands, or RTS controls.

B The SLISTO Command
Adds a sorted auto-width list to the current dialog. The list does not require a user selec-
tion.

Syntax:
SLISTO prompt$,numerical_variable

or
SLISTO prompt$,numerical_variable, iteml$, item2$, item3$, etc.

or
SLISTO prompt$,numerical_variable,height

or

SLISTO prompt$,numerical_variable,height, iteml$, item2$, item3$, etc.

Arguments:

prompt$: the prompt

numerical_variable: the variable associated with the list

height: the number of items the list can display without scrolling

iteml$, item2$, item3$, etc.:.items to be placed in the list

Use this command to add a list that noes not requires the user to select an item. The items
will be sorted alphabetically.

prompt$ is a string that tells the user what the selection in the list is for. The prompt is
placed immediately above the list. Use an empty string as the prompt if you do not want
a prompt.

To assign a keyboard shortcut to the list, put an underscore character (
propriate character in the prompt.

) after the ap-

Page 136

U.P.M.A.C.S. SCL Language Reference Command Reference

numerical_variable has to be a numerical variable. If the variable value is greater
than 0, the item with the corresponding number is selected initially. The variable value is
set to the number of the item selected when the user presses a button other than the
Cancel button. If no item is selected, the value is set to 0.

Note that the items are numbered according to the order in which you add them, not
the order in which they appear in the list. if numerical_variable is one, iteml$ will be
selected initially. Since the list was sorted, however, iteml$ might not be the first item in
the list in the dialog. If the user selects 1tem2$, numerical_variable will be set to two,
regardless of where item2$ appears in the sorted list.

The list will be at least wide enough to hold the longest of the items you add. To specify a
specific width for the list, use the, use the SLISTWO command.

height is an optional height of the edit field. If you specify a height, the list will be able to
show that many items at a time. The user can see additional items by scrolling down. If
you don’t specify a height, the list will be large enough to hold all the items.

You can specify any number of items to be placed in the list in the SLISTO command, or
you can add items later using the LITEM command.

SLISTO does not require the user make a selection. If you want to force the user to select
an item, use the SLIST command.

SLISTO sorts all items alphabetically. If you want the items in the list to appear in the or-
der you add them, use the LISTO command.

Example:

Example Program

Flease zelect a colour: oK |

Fuchzia Cancel
International orange
Lavender

If the value of numerical _variable is negative, or if it contains fractions, SLISTO gener-
ates an error.

If height is negative or zero, or if it contains fractions, SLISTO generates an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data, programs for SABus commands, or RTS controls.

B The SLISTWO Command

Adds a sorted fixed-width list to the current dialog. The list does not require a user selec-
tion.

Syntax:
SLISTWO prompt$,numerical_variable,width

or

Page 137

U.P.M.A.C.S. SCL Language Reference Command Reference

SLISTWO prompt$,numerical_variable,width, iteml$, item2$, item3$, etc.
or

SLISTWO prompt$,numerical_variable,width,height

or

SLISTWO prompt$,numerical_variable,width,height,iteml$, item2$, item3$,
etc.

Arguments:

prompt$: the prompt

numerical_variable: the variable associated with the list

width: the width of the list

height: the number of items the list can display without scrolling

iteml$, item2$, item3$, etc.:items to be placed in the list

Use this command to add a list that noes not requires the user to select an item. The items
will be sorted alphabetically.

prompt$ is a string that tells the user what the selection in the list is for. The prompt is
placed immediately above the list. Use an empty string as the prompt if you do not want
a prompt.

To assign a keyboard shortcut to the list, put an underscore character (
propriate character in the prompt.

) after the ap-

numerical_variable has to be a numerical variable. If the variable value is greater
than 0, the item with the corresponding number is selected initially. The variable value is
set to the number of the item selected when the user presses a button other than the
Cancel button. If no item is selected, the value is set to 0.

Note that the items are humbered according to the order in which you add them, not
the order in which they appear in the list. if numerical_variable is one, iteml$ will be
selected initially. Since the list was sorted, however, iteml$ might not be the first item in
the list in the dialog. If the user selects 1tem2$, numerical_variable will be set to two,
regardless of where 1tem2$ appears in the sorted list.

width is the minimum width of the list box. The list will be wide enough for items with
about that many characters. Please note that since not all characters are the same
width, how many characters will fit in the list depends greatly on what characters they
are. Note also that the actual list may be wider (but never narrower) than the width you
specify, since lists always extend across the whole dialog. To calculate the width auto-
matically, use the SLISTO command

height is an optional height of the edit field. If you specify a height, the list will be able to
show that many items at a time. The user can see additional items by scrolling down. If
you don’t specify a height, the list will be large enough to hold all the items.

You can specify any number of items to be placed in the list in the SLISTWO command,
or you can add items later using the LITEM command.

SLISTWO does not require the user make a selection. If you want to force the user to se-
lect an item, use the SLISTW command.

SLISTWO sorts all items alphabetically. If you want the items in the list to appear in the or-
der you add them, use the LISTWO command.

Page 138

U.P.M.A.C.S. SCL Language Reference Command Reference

Example:

Example Program

Fleaze zelect a colour: oK |

Fuchsia Cancel
International arange
Lavender

If the value of numerical_variable is negative, or if it contains fractions, SLISTWO gen-
erates an error.

If width or height is negative or zero, or if it contains fractions, SLISTWO generates an
error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data, programs for SABus commands, or RTS controls.

B The LITEM Command

Adds items to a dialog list.

Syntax:
LITEM iteml$, item2$, item3$, etc.

Arguments:
iteml$, item2$, item3$, etc.: the items to be placed in the list

Use this command to add items to a list you just added to the current dialog using the
LIST, LISTW, LISTO, LISTWO, SLIST, SLISTW, SLISTO, or SLISTWO command.

If the last item added to the current dialog was not a list, LITEM generates an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data, programs for SABus commands, or RTS controls.

B The RDGRP Command

Adds a radio button group to the current dialog. The user is required to select a button.

Syntax:
RDGRP numerical_variable

or

RDGRP numerical _variable, labell$, label2$, l1abel3$, etc.
Arguments:

numerical_variable: the variable associated with the group

labell$, label2$, label3$ etc.: buttons to be added to the group

Page 139

U.P.M.A.C.S. SCL Language Reference Command Reference

Use this command to add a radio group if the user must select one of the buttons.

numerical _variable has to be a numerical variable. If the variable value is greater
than 0, the button with the corresponding number is selected initially. The variable value
is set to the number of the button selected when the user presses a button other than the
Cancel button.

You can specify any number of buttons to be added to the group in the RDGRP com-
mand, or you can add buttons later using the RDBTN command. To assign a keyboard
shortcut to a button, put an underscore character (“_") after the appropriate character
in its label.

RDGRP requires the user to select a button. If you want the user to be able to leave all
buttons unclicked, use the RDGRPO command

Example:
Example Program
= Pagsé simple
(¢ Passé composé
) Cancel |
" Impartait

" Plus-que-parfatait
™ Pazsé antérieur

If the value of numerical_variable is negative, or if it contains fractions, RDGRP gener-
ates an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data, programs for SABus commands, or RTS controls.

B The RDGRPO Command

Adds a radio button group to the current dialog. The user does not have to select a but-
ton.

Syntax:
RDGRPO numerical _variable

or

RDGRPO numerical_variable, labell$, label2$, label3$ etc.
Arguments:

numerical_variable: the variable associated with the group

label1l$, label2$, label3$ etc.: buttons to be added to the group

Use this command to add a radio group if the user does not have to select one of the
buttons.

numerical_variable has to be a numerical variable. If the variable value is greater
than 0, the button with the corresponding number is selected initially. The variable value
is set to the number of the button selected when the user presses a button other than the
Cancel button. If no button is clicked, the value is set to 0.

Page 140

U.P.M.A.C.S. SCL Language Reference Command Reference

You can specify any number of buttons to be added to the group in the RDGRPO com-
mand, or you can add buttons later using the RDBTN command. To assign a keyboard
shortcut to a button, put an underscore character (“_") after the appropriate character
in its label.

RDGRP does not require the user to select a button. If you want to force the user to select
a button, use the RDGRP command

Example:
Example Program E
" Passé simple
% Passé composé = | |
" |mparfait anee

" Plus-que-parfafait
' Passé antérieur

If the value of numerical _variable is negative, or if it contains fractions, RDGRPO gener-
ates an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data, programs for SABus commands, or RTS controls.

B The RDBTN Command

Adds buttons to a radio group.

Syntax:
RDBTN labell$, label2$, 1abel3$ etc.

Arguments:
label1$, label2$, label3$ etc.: the buttons to be added to the group

Use this command to add buttons to a radio group you just added to the current dialog
using the RDGRP or RDGRPO command. To assign a keyboard shortcut to a button, put an
underscore character (“_") after the appropriate character in its label.

If the last item added to the current dialog was not a radio group, RDBTN generates an
error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data, programs for SABus commands, or RTS controls.

B The MENU Command

Adds an auto-width pop-up menu to the current dialog. The menu requires a selection.

Syntax:
MENU prompt$,numerical_variable

or

MENU prompt$,numerical_variable, iteml$, item2$, item3$, etc.

Page 141

U.P.M.A.C.S. SCL Language Reference Command Reference

or
MENU prompt$,numerical_variable,width

or
MENU prompt$,numerical_variable,width, iteml$, item2$, item3$, etc.

Arguments:

prompt$: the prompt

numerical_variable: the variable associated with the pop-up menu
width: the width of the menu

iteml$, item2$, item3$, etc.:items to be added to the menu

Use this command to add pop-up menu that requires the use to select an item. A pop-
up menu is sometimes also called a combo-box.

prompt$ is a string that tells the user what it is he is selecting. You can have three types of
prompts:

» To have no prompt, use an empty string for prompt$.

» To have the prompt on a separate line, use a string that end with a return charac-
ter (RET$)

» To have the prompt on the same line and to the left of the menu, use a string that
dous not end in a return character

To assign a keyboard shortcut to the pop-up menu, put an underscore character (“_")
after the appropriate character in the prompt.

numerical_variable has to be a numerical variable. If the variable value is greater
than 0, the item with the corresponding number is selected initially. The variable value is
set to the number of the item selected when the user presses a button other than the
Cancel button.

width is an optional minimum width of the menu. If you specify a width, the menu will be
wide enough for items with about that many characters. Please note that since not all
characters are the same width, how many characters will fit in the list depends greatly on
what characters they are. Note also that the actual menu may be wider (but never nar-
rower) than the width you specify, since menus always extend across the whole dialog. If
you don’t specify a width, the menu will be at least wide enough to hold the longest of
the items you add.

You can specify any number of items to be placed in the pop-up menu in the MENU
command, or you can add items later using the MITEM command.

MENU will disable all buttons added with the BUTTON command if no item is selected. To
allow the user to proceed without selecting an item, use the MENUO command.

If the value of numerical _variable is negative, or if it contains fractions, MENU gener-
ates an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data, programs for SABus commands, or RTS controls.

Page 142

U.P.M.A.C.S. SCL Language Reference Command Reference

B The MENUO Command

Adds an auto-width pop-up menu to the current dialog. The menu does not require a
selection.

Syntax:
MENUO prompt$,numerical_variable

or
MENUO prompt$,numerical_variable, iteml$, item2$, item3$, etc.

or
MENUO prompt$,numerical_variable,width

or

MENUO prompt$,numerical_variable,width,iteml$, item2$, item3$, etc.

Arguments:

prompt$: the prompt

numerical _variable: the variable associated with the pop-up menu
width: the width of the menu

iteml$, item2$, item3$, etc.:items to be added to the menu

Use this command to add pop-up menu that enables (but does not require)requires the
use to select an item. A pop-up menu is sometimes also called a combo-box.

prompt$ is a string that tells the user what it is he is selecting. You can have three types of
prompts:

» To have no prompt, use an empty string for prompt$.

» To have the prompt on a separate line, use a string that end with a return charac-
ter (RET$)

» To have the prompt on the same line and to the left of the menu, use a string that
dous not end in a return character

To assign a keyboard shortcut to the pop-up menu, put an underscore character (“_")
after the appropriate character in the prompt.

numerical_variable has to be a numerical variable. If the variable value is greater
than 0, the item with the corresponding number is selected initially. The variable value is
set to the number of the item selected when the user presses a button other than the
Cancel button. If no item is selected, the value is set to 0.

width is an optional minimum width of the menu. If you specify a width, the menu will be
wide enough for items with about that many characters. Please note that since not all
characters are the same width, how many characters will fit in the list depends greatly on
what characters they are. Note also that the actual menu may be wider (but never nar-
rower) than the width you specify, since menus always extend across the whole dialog. If
you don’t specify a width, the menu will be at least wide enough to hold the longest of
the items you add.

Page 143

U.P.M.A.C.S. SCL Language Reference Command Reference

You can specify any number of items to be placed in the pop-up menu in the MENUO
command, or you can add items later using the MITEM command.

MENUO does not require the user make a selection. If you want to force the user to select
an item, use the MENU command.

If the value of numerical_variable is negative, or if it contains fractions, MENUO gener-
ates an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data, programs for SABus commands, or RTS controls.

B The MITEM Command

Adds items to a dialog menu.

Syntax:
MITEM iteml$, item2$, item3$, etc.

Arguments:
iteml$, item2$, item3$, etc.: the items to be added to the menu

Use this command to add items to a pop-up menu you just added to the current dialog
using the MENU or MENUO command.

If the last item added to the current dialog was not a pop-up menu, MITEM generates an
error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data, programs for SABus commands, or RTS controls.

B The BUTTON Command

Adds a button to the current dialog.

Syntax:
BUTTON label$

Arguments:
label$: the label on the button

This command adds a button to the dialog. The buttons added using the BUTTON and
BUTTONO commands are numbered in the order you add them, starting at button num-
ber 1. See Dialog Buttons in Dialogs on page 29 for more details.

To assign a keyboard shortcut to the button, put an underscore character (“_") after the
appropriate character in label$.

Page 144

U.P.M.A.C.S. SCL Language Reference Command Reference

Examples of button labels:
label$ = "R_ejoyce"

i

Bejovce

label$ = "Say W_hat?"

J

Sap What?

label$ = "Mang_o"

d

b ango

If you want your dialog to have only an OK and a Cancel button, you do not need to
use the BUTTON command. If you do not add any buttons manually, SCL will add a stan-
dard OK button with button number 1, and a Cancel button with button number 0.

If you add any buttons using the BUTTON, BUTTONO, or CANCELBTN commands, you must
add the OK and Cancel buttons manually.

The buttons added with the BUTTON command are disabled under the following condi-
tions:

any entry field created using the STREDIT, PWDEDIT, NUMEDIT, or INTEDIT command has
no textin it, or

any list box created using the LIST, LISTW, SLIST, or SLISTW command has no selection,
or

any radio group created using the RDGRP command has no button pressed, or
any menu created using the MENU command has no selection.
To add a button that is always enabled, use the BUTTONO command.

This command is not available within programs for sources, checksums, and SABus re-
sponse data, programs for SABus commands, or RTS controls.

B The BUTTONO Command

Adds a button that is always enabled to the current dialog.

Syntax:
BUTTONO label$

Arguments:
label$: the label on the button

This command adds a button to the dialog. The buttons added using the BUTTON and
BUTTONO commands are numbered in the order you add them, starting at button num-
ber 1. See Dialog Buttons in Dialogs on page 29 for more details.

Page 145

U.P.M.A.C.S. SCL Language Reference Command Reference

To assign a keyboard shortcut to the button, put an underscore character (“_") after the
appropriate character in label$.

Examples of button labels:
label$ = "R_ejoyce™

Bejoyce |

label$ = "Say W_hat?"

Say what?

d

label$ = "Mang_o"

d

kM ango

If you want your dialog to have only an OK and a Cancel button, you do not need to
use the BUTTONO command. If you do not add any buttons manually, SCL will add a
standard OK button with button humber 1, and a Cancel button with button number 0.

If you add any buttons using the BUTTON, BUTTONO, or CANCELBTN commands, you must
add the OK and Cancel buttons manually.

The buttons added with the BUTTONO command are always enabled. To add a button
that is automatically disabled if the user did not enter all required information, use the
BUTTON command.

This command is not available within programs for sources, checksums, and SABus re-
sponse data, programs for SABus commands, or RTS controls.

B The CANCELBTN Command

Adds a cancel button to the current dialog.

Syntax:
CANCELBTN

or

CANCELBTN label$

Arguments:
label$: the label on the button

This command adds a Cancel button to the dialog. The Cancel button is always button
number 0. If you do not specify a label for the button, the button will read “Cancel.”

To assigh a keyboard shortcut to the button, put an underscore character (*_") after the
appropriate character in label$.

Page 146

U.P.M.A.C.S. SCL Language Reference Command Reference

Examples of button labels:
label$ = "R_ejoyce"

i

Bejovce

label$ = "Say W_hat?"

J

Sap What?

label$ = "Mang_o"

d

b ango

If you want your dialog to have only an OK and a Cancel button, you do not need to
use the CANCELBTN command. If you do not add any buttons manually, SCL will add a
standard OK button with button number 1, and a Cancel button with button number 0.

If you add any buttons using the BUTTON, BUTTONO, or CANCELBTN commands, you must
add the OK and Cancel buttons manually.

If the current dialog already has a cancel button, CANCELBTN generates an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data, programs for SABus commands, or RTS controls.

Dialog Button Callback Commands

B The DLGERROR Command

Highlights an item in a dialog to show the user where invalid data was entered.

Syntax:
DLGERROR item variable

or
DLGERROR item_variable$

or
DLGERROR item_variable%

Arguments:
item variable, item variable$, item variable®%: the variable associated with the

dialog item

If, inside a dialog button callback, you find that the user has entered invalid data, use
the PRINT command to explain to the user what is wrong, then set the result variable
specified in the DIALOG command to 0, and use the DLGERROR command to highlight the
item where invalid data was entered.

Page 147

U.P.M.A.C.S. SCL Language Reference Command Reference

If it is used outside a dialog button callback, or if item_variable, item_variable$, or
item_variable% is not associated with a dialog item, DLGERROR generates an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data, programs for SABus commandes, or RTS controls.

B The SETLITEM Command

Sets the text of a dialog list item.

Syntax:

SETLITEM item_variable, index, item_text$
Arguments:

item_variable: the variable associated with the list
index: the 1-based index of the list item
item text$: the new list item text

Use SETLITEM inside a dialog button callback to change the text shown in a list item, or
to restore a list item you deleted using the DELLITEM command..

Use MAXLITEM to determine the maximum list item index.

If you want to add an entirely new item at then (thereby increasing the maximum index
by 1), use the ADDLITEM command.

If it is used outside a dialog button callback, or if item_variable is not associated with a
list, SETLITEM generates an error.

If index is smaller than 1, or larger than the maximum list item index, SETLITEM generates
an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data, programs for SABus commands, or RTS controls.

B The ADDLITEM Command

Adds a new list item at the end of a dialog list.

Syntax:
ADDLITEM item_variable,item text$

or
ADDLITEM item_variable, item_text$, index variable
Arguments:

item_variable: the variable associated with the list
item text$: the new list item text

index_variable: a variable to receive the index of the new list item

Use ADDLITEM inside a dialog button callback to add a new list item to a dialog list
(thereby increasing the maximum index by 1). You can specify a variable that will be set
to the index of the newly added item.

Page 148

U.P.M.A.C.S. SCL Language Reference Command Reference

To change the text shown in an existing list item, or to restore a list item you deleted using
the DELLITEM command, use the SETLITEM command.

If it is used outside a dialog button callback, or if item_variable is not associated with a
list, SETLITEM generates an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data, programs for SABus commands, or RTS controls.

B The DELLITEM Command

Deletes a list item from a dialog list.

Syntax:
DELLITEM item variable, index

or
DELLITEM item variable, index,next _index variable
Arguments:

item_variable: the variable associated with the list
index: the 1-based index of the list item

next_index_variable: a variable to receive the index of the next existing list item

Use DELLITEM inside a dialog button callback to delete a list item from a dialog list. De-
leting a list item does not affect the indices of any other list items. The maximum item in-
dex is not changed. The item is merely removed from the list box in the dialog.

You can specify a variable to receive the index of the next item after the one you de-
leted (or before it, if there is none after). If you delete the last item in the list, the variable
will be set to 0. You can use this feature if you are deleting the currently selected item. If
you specify the item variable as the next index variable, then the next item in the list will
automatically be selected. To delete the selected item of a list with the variable
list_variable, use the following code:

DELLITEM list_variable,list variable,list variable

This will ensure that a new list item is selected, if possible. Please note that the item re-
turned in next_index_variable is the next item in the order in which the items appear
in the list, not the item with the next higher index.

Use MAXLITEM to determine the maximum list item index. Use LITEMEXISTS% to deter-
mine if the list item has already been deleted.

To delete all list items and rebuild the list from scratch, use the CLRLITEMS command.
You can restore an item that you deleted using the SETLITEM command.

If it is used outside a dialog button callback, or if item_variable is not associated with a
list, DELLITEM generates an error.

If index is smaller than 1, or larger than maximum list item index, or if the list item with the
specified index has already been deleted, DELL ITEM generates an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data, programs for SABus commands, or RTS controls.

Page 149

U.P.M.A.C.S. SCL Language Reference Command Reference

B The CLRLITEMS Command

Deletes all items in a dialog list.

Syntax:
CLRLITEMS item variable

Arguments:
item variable: the variable associated with the list

Use CLRLITEMS inside a dialog button callback to delete all items from a dialog list. If you
use CLRLITEMS, the maximum index will be 0 (meaning no items exist), and the next item
you add using ADDLITEM will have the item number 1. This distinguishes it from DELLITEM,
which does not change the maximum item number or the indices of any items.

Use DELLITEM to remove a single item from a dialog list.

You cannot restore the items using the SETLITEM command after clearing the items. Use
ADDLITEM to add new items instead.

If it is used outside a dialog button callback, or if item_variable is not associated with a
list, CLRLITEMS generates an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data, programs for SABus commands, or RTS controls.

B The SETMITEM Command

Sets the text of a dialog menu item.

Syntax:

SETMITEM item_variable, index, item_text$
Arguments:

item_variable: the variable associated with the menu
index: the 1-based index of the menu item
item_text$: the new menu item text

Use SETMITEM inside a dialog button callback to change the text shown in a menu item,
or to restore a menu item you deleted using the DELMITEM command..

Use MAXMITEM to determine the maximum menu item index.

If you want to add an entirely new item at then (thereby increasing the maximum index
by 1), use the ADDMITEM command.

If it is used outside a dialog button callback, or if item_variable is not associated with a
menu, SETMITEM generates an error.

If index is smaller than 1, or larger than the maximum menu item index, SETMITEM gen-
erates an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data, programs for SABus commandes, or RTS controls.

Page 150

U.P.M.A.C.S. SCL Language Reference Command Reference

B The ADDMITEM Command

Adds a new menu item at the end of a dialog menu.

Syntax:
ADDMITEM item variable, item_text$

or

ADDMITEM item variable, item_text$, index _variable
Arguments:

item_variable: the variable associated with the menu
item_text$: the new menu item text

index_variable: a variable to receive the index of the new menu item

Use ADDMITEM inside a dialog button callback to add a new menu item to a dialog
menu (thereby increasing the maximum index by 1). You can specify a variable that will
be set to the index of the newly added item.

To change the text shown in an existing menu item, or to restore a menu item you de-
leted using the DELMITEM command, use the SETMITEM command.

If it is used outside a dialog button callback, or if item_variable is not associated with a
menu, SETMITEM generates an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data, programs for SABus commands, or RTS controls.

B The DELMITEM Command

Deletes a menu item from a dialog menu.

Syntax:
DELMITEM item_variable, index

or

DELMITEM item_variable, index,next_index_variable
Arguments:

item_variable: the variable associated with the menu
index: the 1-based index of the menu item

next_index_variable: a variable to receive the index of the next existing menu item

Use DELMITEM inside a dialog button callback to delete a menu item from a dialog
menu. Deleting a menu item does not affect the indices of any other menu items. The
maximum item index is not changed. The item is merely removed from the menu box in
the dialog.

You can specify a variable to receive the index of the next item after the one you de-
leted (or before it, if there is none after). If you delete the last item in the menu, the vari-
able will be set to 0. You can use this feature if you are deleting the currently selected
item. If you specify the item variable as the next index variable, then the next item in the
menu will automatically be selected. To delete the selected item of a menu with the
variable menu_variable, use the following code:

Page 151

U.P.M.A.C.S. SCL Language Reference Command Reference

DELMITEM menu_variable,menu_variable,menu_variable
This will ensure that a new menu item is selected, if possible.

Use MAXMITEM to determine the maximum menu item index. Use MITEMEXISTS% to de-
termine if the menu item has already been deleted.

To delete all menu items and rebuild the menu from scratch, use the CLRMITEMS com-
mand.

You can restore an item that you deleted using the SETMITEM command.

If it is used outside a dialog button callback, or if item_variable is not associated with a
menu, DELMITEM generates an error.

If index is smaller than 1, or larger than maximum menu item index, or if the menu item
with the specified index has already been deleted, DELMITEM generates an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data, programs for SABus commands, or RTS controls.

B The CLRMITEMS Command

Deletes all items in a dialog menu.

Syntax:
CLRMITEMS item variable

Arguments:
item_variable: the variable associated with the menu

Use CLRMITEMS inside a dialog button callback to delete all items from a dialog menu. If
you use CLRMITEMS, the maximum index will be 0 (meaning no items exist), and the next
item you add using ADDMITEM will have the item number 1. This distinguishes it from
DELMITEM, which does not change the maximum item number or the indices of any
items.

Use DELMITEM to remove a single item from a dialog menu.

You cannot restore the items using the SETMITEM command after clearing the items. Use
ADDMITEM to add new items instead.

If it is used outside a dialog button callback, or if item_variable is not associated with a
menu, CLRMITEMS generates an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data, programs for SABus commands, or RTS controls.

File and Network Connection Commands

B The OPEN Command

Opens a file and assigns a file number to it.

Page 152

U.P.M.A.C.S. SCL Language Reference Command Reference

Syntax:
OPEN file_number,path$,access mode,file_ type

or
OPEN file_number,path$,access mode,Ffile type,result_variable%

Arguments:

file_number: the file number to assign to the file (0 to 4,294,967,295)
path$: the path of the file

access_mode: the access mode (see below)

file_type: the file type (see below)

result_variable%: a variable to receive the success/failure status

access_mode can be one of the following values:

Value mode meaning
1 read open at beginning for reading
2 write delete file content and open for
writing
3 ap- open at end for reading and writing
pend

Ffile_type can be one of the following values:

Value type meaning

1 text file translate CR+LF pairs

2 binary fle don’t translate CR+LF
pairs

If the file cannot be opened for any reason, OPEN will display a message to the user. If
you do not specify a result variable, OPEN will end the program if the file cannot be
opened. If you do specify a result variable, it will be set to true if the file could be
opened, and false if it could not.

If file_number is not a valid file number, or if any open file or network connection is al-
ready using it, OPEN generates an error.

If access_mode or file_type is not one of the values listed above, OPEN generates an
error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data.

B The CONNECT Command

Opens a TCP/IP socket network connection and assigns a file number to it.

Syntax:
CONNECT file_number, ip_address$,tcp port _number

or
CONNECT file_number, ip_address$,tcp port number,result _variable%

Page 153

U.P.M.A.C.S. SCL Language Reference Command Reference

or
CONNECT

file_number, ip_address$, tcp_port _number,result variable%,timeout
Arguments:

file_number: the file number to assign to the file (0 to 4,294,967,295)
ip_address$: the IP address of the server

tcp_port _number: the TCP port number that the server is waiting on

result_variable%: a variable to receive the success/failure status

timeout: the timeout in miliseconds for this connection for the INPUT#
command

CONNECT attempts to establish a TCP/IP socket connection to a server waiting on the
specified port at the specified IP address. ip_address$ is the server’s IP address in dot-
ted form, e.g. "'192.168.1.100". The first component of an IP address cannot be 0, 127,
or greater than 223, except for the loopback address 127.0.0.1.

Unlike the OPEN command, CONNECT will not display an error message to the user if the
connection could not be established. If you do not specify a result variable, CONNECT wvill
end the program if the connection cannot be established. If you do specify a result vari-
able, it will be set to true if the connection could be established, and false if it could not.

If File_number is not a valid file number, or if any open file or network connection is al-
ready using it, CONNECT generates an error.

If ip_address is not a valid IP address, or tcp_port_number is not a valid TCP port,
CONNECT generates an error.

The timeout value sets the number of milliseconds for the connection. If this value is not
given, the connection will have a default timeout of 250 ms. If the value is not an integer greater
than 0, CONNECT generates an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data.

B The CLOSE Command

Closes an open file or network connection.

Syntax:
CLOSE file_number

Arguments:
file_number: the file number of the file or connection

If File_number does not represent an open file or network connection, CLOSE generates
an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data.

Page 154

U.P.M.A.C.S. SCL Language Reference Command Reference

B The PRINT# Command

Writes data to a file at the current file position, or sends data over a network connection.

Syntax:
PRINT# file_number, list of expressions

Arguments:
file_number: the file number of the file or connection

PRINT# is followed by a list of expressions of any type (humerical, string, or Boolean),
separated by commas or semicolons. String expressions are written to the file directly.
Numbers are written in decimal format, using exponential notation whenever necessary.
Boolean values are written as “true” or “false.”

Expressions separated by a semicolon are placed immediately next to each other, ex-
pressions separated by a comma in the list are separated by a tab in the file.

PRINT# will write a line termination (CR for binary files and network connections, CR+LF
for text files) after the last expression unless you do one of the following:

To omit the line termination, put a semicolon (;) at the end of the list of expressions.

To replace the line termination by a tab character, put a comma at the end of the list of
expressions.

If the file is a text file, PRINT# will translate CRs into CR+LF pairs.

If Fille_number does not represent a file opened for writing or appending or a network
connection, PRINT# generates an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data.

B The INPUT# Command

Reads data from a file beginning at the current file position, or waits for data from a net-
work connection.

Syntax:
INPUT# file_number,data$

or
INPUT# file_number,data$, length

or

INPUT# file_number,data$, length,tries

Arguments:

Ffile_number: the file number of the file or connection

data$: a variable to receive the data

length: the number of characters to read

tries: the number of times the command will try to read from the connection

The behaviour of INPUT# differs slightly from files to network connections.

Page 155

U.P.M.A.C.S. SCL Language Reference Command Reference

If File_number is a file:

If you specify a length, INPUT# will read that many characters, or all data to the end of
the file, whichever is less. If you do not specify a length, INPUT# will read one line of text,
including the line termination (CR for binary files, CR+LF for text files), or all data to the
end of the file, whichever is less. If the file is a text file, INPUT# will translate CR+LF pairs
into CRs.

If File_number is a network connection:

For network connections, you must specify a length. INPUT# will wait for data to come in
over the network until that many bytes have been received, or the connection was
closed by the remote computer. If no tries is given or equal to 0, U.P.M.A.C.S. will keep
on trying to read until the requested number of bytes is read. If tries is given, the num-
ber determines the number of reads performed in order to get the requested number of
bytes. The time of each read attempt is determined by the timeout value set in the CON-
NECT command. Once the number of bytes has been received or the number of tries has
been exausted, the function will return. data$ will contain all bytes that have been ac-
cumulated in the repeated tries including the empty string if no bytes were received at
all. INPUT# will also stop waiting for data if you close the station.

If File_number does not represent a file opened for reading or appending or a network
connection, or if length is not an integer between 1 and 4,294,967,295, INPUT# gener-
ates an error.

If File_number represents a network connection and you did not specify a length,
INPUT# generates an error.

If triesis not an integer equal to or greater than 0, INPUT# generates an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data.

B The SETFPOS Command

Sets the current file position.

Syntax:
SETFPOS file_number,byte offset

Arguments:
file_number: the file number of the file

byte offset: the new offsetin bytes from the beginning

Sets the file position to the specified number of bytes after the first byte in the file. The
next PRINT# or INPUT# command will start at that position. If file_number is a text file,
the position in bytes is not necessarily the position in characters, since CRs are stored as a
CR-LF combination in Windows. There is no way to set the position within a text file in
characters. If you require to do so, you must keep track of the file position yourself.

If File_number does not represent an open file, or if byte_offset is not an integer be-
tween 0 and 4,294,967,295, SETFPOS generates an error.

If File_number does represents a network connection, SETFPOS generates an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data.

Page 156

U.P.M.A.C.S. SCL Language Reference Command Reference

B The LIMITFLEN Command

Limits the length of a file.

Syntax:
LIMITFLEN Ffile_number,maximum_length

Arguments:
file_number: the file number of the file

maximum_length: the maximum allowed length

Checks if the file is larger than the specified maximum, and shrinks it if it is. The file is shrunk
by removing lines of text from the beginning of the file, until the file is shorter than half of
maximum_length. The file must have been opened for appending (reading and writing).

Use this command to keep a file, like a log file, to which you continuously add lines of text
from eventually filing up all available disk space. Use LIMITFLEN everytime you have
finished writing an entry to shrink the file if it has become too large.

Note: LIMITFLEN only removes entire lines from the file. Don’t use LIMITFLEN on
a file that does not consist of lines of text: it will not work properly and may simply
erase the file altogether if it is too large.

If fFile_number does not represent a file opened for appending, or if maximum_length is
not an integer between 1 and 4,294,967,295, LIMITFLEN generates an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data.

Register Commands

B The SETREGNAME Command

Sets the name of a register.

Syntax:
SETREGNAME tag$,name$

Arguments:
tags$: the tag of the register

name$: the new name

If the register is user configurable, the new name will be remembered even if the station
file is reloaded. If the register is not user configurable, the new name will be lost when the
station is closed.

If tag$ is not the tag of a register, SETREGNAME generates an error.

Page 157

U.P.M.A.C.S. SCL Language Reference Command Reference

B The REVERTREGNAME Command

Reverts the name of a register to the name defined in the station file.

Syntax:
REVERTREGNAME tag$

Arguments:
tag$: the tag of the register

Reverts a register to its original name, removing any names set using the SETREGNAME
command, as well as any names configured by the user from within the Configure Data
dialog.

If tag$ is not the tag of a register, REVERTREGNAME generates an error.

B The SETONLOGSTR Command

Sets the log string for the ON state of a register.

Syntax:
SETONLOGSTR tag$, log_string$

Arguments:
tag$: the tag of the register

log_string$: the new log string

The log string is written to the log as is; %-symbols are not replaced with the register name
as is done with the default log strings.

If the register is user configurable and has configurable log strings, the new string will be
remembered even if the station file is reloaded. If the register’s log strings are not user
configurable, the new string will be lost when the station is closed.

If tag$ is not the tag of a register, SETONLOGSTR generates an error.

B The REVERTONLOGSTR Command

Reverts the log string for the ON state of a register to the string defined in the station file.

Syntax:
REVERTONLOGSTR tag$

Arguments:
tag$: the tag of the register

Reverts a register’s ON state log string to the original string, removing any strings set using
the SETONLOGSTR command, as well as any strings configured by the user from within the
Configure Data dialog.

If tag$ is not the tag of a register, REVERTONLOGSTR generates an error.

Page 158

U.P.M.A.C.S. SCL Language Reference Command Reference

B The SETOFFLOGSTR Command

Sets the log string for the OFF state of a register.

Syntax:
SETOFFLOGSTR tag$,log_string$

Arguments:
tag$: the tag of the register

log_string$: the new log string

The log string is written to the log as is; %-symbols are not replaced with the register name
as is done with the default log strings.

If the register is user configurable and has configurable log strings, the new string will be
remembered even if the station file is reloaded. If the register’s log strings are not user
configurable, the new string will be lost when the station is closed.

If tag$ is not the tag of a register, SETOFFLOGSTR generates an error.

B The REVERTOFFLOGSTR Command

Reverts the log string for the OFF state of a register to the string defined in the station file.

Syntax:
REVERTOFFLOGSTR tag$

Arguments:
tag$: the tag of the register

Reverts a register’s OFF state log string to the original string, removing any strings set using
the SETOFFLOGSTR command, as well as any strings configured by the user from within
the Configure Data dialog.

If tag$ is not the tag of a register, REVERTOFFLOGSTR generates an error.

B The SETBSTVAL Command

Sets the value of a bistate register.

Syntax:
SETBSTVAL tag$,value%

Arguments:
tag$: the tag of the register

value%: the value to set

If value% is true, the register will go into its ON/alarm state. If value% is false, it ill go into its
OFF/alarm clear state. If the register has a response delay, it will not only go into the
specified state after the dalay has elapsed without further change.

If the register is not masked, and the value changes as a result of the SETBSTVAL com-
mand, the change will be logged, and any automatic controls will be executed.

If tag$ is not the tag of a bistate register, SETBSTVAL generates an error.

Page 159

U.P.M.A.C.S. SCL Language Reference Command Reference

This command is not available within programs for sources, checksums, and SABus re-
sponse data.

B The SETBSTDLY Command

Sets the response delay of a bistate register.

Syntax:
SETBSTDLY tag$,delay_seconds

Arguments:
tag$: the tag of the register

delay_seconds: the new response delay, in seconds

The new response delay will be active the next time the value of the register is updated.

If tag$ is not the tag of a bistate register, or if delay_seconds is not between 0 and
4,294,967.295, SETBSTDLY generates an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data.

B The SETDIGVAL Command

Sets the value of a digital register.

Syntax:
SETDIGVAL tag$,value

or
SETDIGVAL tag$,value_name$
Arguments:

tag$: the tag of the register
value: the value to set

value_name$: the name of the value to set

If the register is not masked, and the value changes as a result of the SETDIGVAL com-
mand, the change will be logged, the alarm state will be updated, and any automatic
controls will be executed.

If tag$ is not the tag of a digital register, if value is not an integer between 0 and
4,294,967,295, or if value_name$ is not the name of a value of the register, SETDIGVAL
generates an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data.

B The SETANAVAL Command

Sets one value of an analog register.

Page 160

U.P.M.A.C.S. SCL Language Reference Command Reference

Syntax:
SETANAVAL tag$,value

or
SETANAVAL tag$,value, index

Arguments:
tags$: the tag of the register

value: the value to set
index: the 1-based index of the value

SETANAVAL sets a single value of an analog register, using “normal” (equal) as the
greater / less status. To set a value with a different greater / less status, use SETANAVALGL.

index is the index of the value. A register with a size of one value has only a value with
index 1. A register with a size of 4 values has values with indices 1, 2, 3, and 4.

If the register has a size of one value, you do not have to specify an index, as it is always
1. If the register has a size of more than one value, and you do not specify an index, then
all existing values will be shifted to the next lower index, and the value with the highest
index will be set to value. This allows you to create a history of values by calling
SETANAVAL repeatedly at regular intervals.

If the register was in the error state, all values will be set to value.

If the register is not masked, the alarm state will be updated based on the new value,
and any changes will be logged and automatic controls executed, if necessary.

To set all the values of an analog register with a size of more than one value at once, use
the SETANAVALS command.

If tag$ is not the tag of an analog register, or if index is smaller than 1, larger than the
size of the register, or if it contains fractions, SETANAVAL generates an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data.

Page 161

U.P.M.A.C.S. SCL Language Reference Command Reference

B The SETANAVALGL Command

Sets one value and its greater / less status of an analog register.

Syntax:
SETANAVALGL tag$,value,greater_less_status

or
SETANAVALGL tag$,value,greater_less_status, index
Arguments:

tag$: the tag of the register

value: the value to set
greater_less_status: the greater/ less status of the value
index: the 1-based index of the value

SETANAVALGL sets a single value of an analog register. The greater / less status of the
value will be set to “less than” if greater_less_status is less than 0, and to “greater
than” if it is greater than 0. If greater_less_status is equal to zero, the value will be a
normal value (equal). To set the value to a normal value, you can also use the
SETANAVAL command.

index is the index of the value. A register with a size of one value has only a value with
index 1. A register with a size of 4 values has values with indices 1, 2, 3, and 4.

If the register has a size of one value, you do not have to specify an index, as it is always
1. If the register has a size of more than one value, and you do not specify an index, then
all existing values will be shifted to the next lower index, and the value with the highest
index will be set to value. This allows you to create a history of values by calling
SETANAVALGL repeatedly at regular intervals.

If the register was in the error state, all values wil be set to value and
greater_less_status.

If the register is not masked, the alarm state will be updated based on the new value,
and any changes will be logged and automatic controls executed, if necessary.

Page 162

U.P.M.A.C.S. SCL Language Reference Command Reference

To set all the values and greater / less statuses of an analog register with a size of more
than one value at once, use the SETANAVALSGL command.

If tag$ is not the tag of an analog register, or if index is smaller than 1, larger than the
size of the register, or if it contains fractions, SETANAVALGL generates an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data.

B The SETANAVALS Command

Sets all the values of an analog register at once.

Syntax:
SETANAVALS tag$,value_array

Arguments:
tags$: the tag of the register

value_array: an array containing the values to set

SETANAVALS sets all the values of an analog register at the same time, using “normal”
(equal) as the greater / less status. To set values with different greater / less statuses, use
SETANAVALSGL.

value_array must be a l-dimensional array variable that contains the new values.
value_array[1] contains the value with index 1, value_array[2] contains the value
with index 2, etc.. The index of the first value is 1.

Do not specify an index for value_array. Only use the array name, without subscript.

If the register is not masked, the alarm state will be updated based on the new values,
and any changes will be logged and automatic controls executed, if necessary.

To set a single value of an analog register, use the SETANAVAL command.

If tag$ is not the tag of an analog register, or if value_array is not a 1-dimensional array,
SETANAVALS generates an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data.

B The SETANAVALSGL Command

Sets all the values and greater / less status of an analog register at once.

Syntax:
SETANAVALSGL tag$,value_array,greater_less_array

Arguments:
tag$: the tag of the register

value_array: an array containing the values to set
greater_less_array: an array containing the greater / less status of the values

SETANAVALS sets all the values of an analog register at the same time.

Page 163

U.P.M.A.C.S. SCL Language Reference Command Reference

value_array and greater_less_array must be a 1-dimensional array variable that
contains the new values and their greater / less statuses. value_array[1] and
greater_less_array[1l] contain the information for the value with index 1,
value_array[2] and greater_less_array[2] contain the information for the value
with index 2, etc.. The index of the first value is 1.

value_array contains the actual values. greater_less_array contains the greater less
flags. The greater / less status of a value will be set to “less than” if the corresponding
element of greater_less_array is less than 0, and to “greater than” if it is greater than
0. If an element is equal to zero, the corresponding value will be a normal value (equal).
To set all the values to normal values, you use the SETANAVALS command.

Do not specify an index for value_array or greater_less_array. Only use the array
names, without subscript.

If the register is not masked, the alarm state will be updated based on the new values,
and any changes will be logged and automatic controls executed, if necessary.

To set a single value and greater / less status of an analog register, use the SETANAVALGL
command.

If tag$ is not the tag of an analog register, or if value_array or greater_less_array is
not a 1-dimensional array, SETANAVALSGL generates an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data.

B The SETANAMIN Command

Sets the low limit of an analog register.

Syntax:
SETANAMIN tag$,limit

Arguments:
tag$: the tag of the register

limit: the new limit to set

If the register is not masked, the alarm state will be updated based on the new limit, and
any changes will be logged and automatic controls executed, if necessary.

If tag$ is not the tag of an analog register, SETANAMIN generates an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data.

B The CLRANAMIN Command

Removes the low limit of an analog register.

Syntax:
CLRANAMIN tag$

Arguments:
tag$: the tag of the register

Page 164

U.P.M.A.C.S. SCL Language Reference Command Reference

If the register is not masked, the alarm state will be updated based on the new limit, and
any changes will be logged and automatic controls executed, if necessary.

If tag$ is not the tag of an analog register, CLRANAMIN generates an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data.

B The SETANAMAX Command

Sets the high limit of an analog register.

Syntax:
SETANAMAX tag$, limit

Arguments:
tag$: the tag of the register

limit: the new limit to set

If the register is not masked, the alarm state will be updated based on the new limit, and
any changes will be logged and automatic controls executed, if necessary.

If tag$ is not the tag of an analog register, SETANAMAX generates an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data.

B The CLRANAMAX Command

Removes the high limit of an analog register.

Syntax:
CLRANAMAX tag$

Arguments:
tag$: the tag of the register

If the register is not masked, the alarm state will be updated based on the new limit, and
any changes will be logged and automatic controls executed, if necessary.

If tag$ is not the tag of an analog register, CLRANAMAX generates an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data.

B The SETINDRANGE Command

Sets the range of dials, graphs, and x-y markers of an analog register.

Syntax:
SETINDRANGE tag$, lower_bound, upper_bound

Arguments:
tag$: the tag of the register

lower_bound: the bottom or left bound of the indicators

Page 165

U.P.M.A.C.S. SCL Language Reference Command Reference

upper_bound: the top orright bound of the indicators

SETINDRANGE sets the range of values displayed by all dials, graphs, and x-y position
markers that display the value of a the analog register you specify. The indicators will be
redrawn to reflect the new range.

You cannot set the ranges of individual indicators. SET INDRANGE sets the range of all in-
dicators for the register to the same bounds. If you need to change the ranges of indo-
cators individually, you must define separate registers for them.

To revert the indicators’ range to the original bounds, use the REVERTINDRANGE com-
mand.

Do not confuse this command with the SETANAMIN and SETANAMAX commands, which
set the alarm limits of the register.

If tag$ is not the tag of an analog register SET INDRANGE generates an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data.

B The REVERTINDRANGE Command

Reverts the range of dials, graphs, and x-y markers of an analog register to their original
bounds.

Syntax:
REVERTINDRANGE tag$

Arguments:
tag$: the tag of the register

REVERT INDRANGE reverts the range of values displayed by all dials, graphs, and x-y posi-
tion markers that display the value of a the analog register you specify to their original
values as specified in the station file. The indicators will be redrawn to reflect the new
ranges.

To set all the indicators’ range, use the SETINDRANGE command.

Do not confuse this command with the CLRANAMIN and CLRANAMAX commands, which
clear the alarm limits of the register.

If tag$ is not the tag of an analog register REVERT INDRANGE generates an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data.

B The SETSTRVAL Command

Sets the value of a string register.

Syntax:
SETSTRVAL tag$,value$

Arguments:
tags$: the tag of the register

Page 166

U.P.M.A.C.S. SCL Language Reference Command Reference

value$: the value to set

If the register is not masked, the alarm state will be updated based on the new value,
and any changes will be logged and automatic controls executed, if necessary.

If tag$ is not the tag of a string register SETSTRVAL generates an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data.

B The MASK Command

Masks a register manually.

Syntax:
MASK tag$

Arguments:
tag$: the tag of the register

Masking a register using the MASK command is equivalent to selecting “Mask Data...”
from the “Settings” menu and masking it from within the Mask/Unmask Data dialog. MASK
is independent of auto masking and of internal masking. To mask a register internally, use
the INTMASK command instead.

Use UNMASK to unmask the register.
If tag$ is not the tag of a register, MASK generates an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data.

B The UNMASK Command

Unmasks a register manually.

Syntax:
UNMASK tag$

Arguments:
tag$: the tag of the register

Unmasking a register using the UNMASK command is equivalent to selecting “Mask
Data...” from the “Settings” menu and unmasking it from within the Mask/Unmask Data
dialog. UNMASK is independent of auto masking and of internal masking. To remove the
internal mask from a register, use the INTMASK command instead.

If tag$ is not the tag of a register, UNMASK generates an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data.

Page 167

U.P.M.A.C.S. SCL Language Reference Command Reference

B The INTMASK Command

Masks a register internally.

Syntax:
INTMASK tag$

Arguments:
tag$: the tag of the register

Masking a register using the INTMASK command applies a special internal mask to the
register that cannot be removed by the operator. INTMASK is independent of manual
masking and of automatic masking. To mask a register as if masked manually by the op-
erator, use the MASK command instead.

Use INTUNMASK to remove the special internal mask.
If tag$ is not the tag of a register, INTMASK generates an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data.

B The INTUNMASK Command

Unmasks a register internally.

Syntax:
INTUNMASK tag$

Arguments:
tag$: the tag of the register

Unmasking a register using the INTUNMASK command removes the special internal mask
applied using the INTMASK command. INTUNMASK is independent of manual masking
and of automatic masking. To unmask a register as if unmasked manually by the opera-
tor, use the UNMASK command instead.

If tag$ is not the tag of a register, INTUNMASK generates an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data.

B The HIDE Command

Hides a register.

Syntax:
HIDE tag$

Arguments:
tag$: the tag of the register

Page 168

U.P.M.A.C.S. SCL Language Reference Command Reference

Hiding a register removes all it’s indicators from the screen. It does not disable the regis-
ter, or change its behaviour in any way. If you need to disable the register as well as hide
it, use the INTMASK command in addition to the HIDE command.

If tag$ is not the tag of a register, HIDE generates an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data.

B The UNHIDE Command

Unhides a hidden register.

Syntax:
UNHIDE tag$

Arguments:
tag$: the tag of the register

Unhides a register previously hidden using the HIDE command, or a register with the “ini-
tially hidden” flag.

If tag$ is not the tag of a register, UNHIDE generates an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data.

Serial Communication Commands

B The GRAB Command

Requests exclusive access to one or more serial ports.

Syntax:
GRAB tagl$,tag2$,tag3$, etc.

Arguments:
tagl$, tag2$, tag3s$, etc.: the tags of the ports to request access to

Once you have grabbed a port, polling is interrupted, and no other program is allowed
access to the port until this program has ended or used the RELEASE command.

If you have used the GRAB command, you will not be able to use it again until you have
used the RELEASE command. This it to avoid deadlocks between SCL programs, each
retaining exclusive access to one port while waiting for the one the other holds. For the
same reason, you cannot use the SENDCMD, SENDSTR, SENDBIN, DISABLEDRV, ENABLEDRYV,
DISABLECMD, and ENABLECMD commands on any other ports than the ones you have
grabbed, if you have grabbed any.

You do not need to grab serial ports to access them. You only need to grab ports if you
want to ensure that you will not be interrupted by a poll or another program between
two commands that access the port.

Page 169

U.P.M.A.C.S. SCL Language Reference Command Reference

In device driver programs, you must specify only one tag, and that tag must be an
empty string (*"*"). This will grab the port of the device the program belongs to, the only
port that can be accessed by a device driver program.

If any of the tags are not the tag of a serial port, or if any tag appears twice in the list,
GRAB generates an error.

If you already have exclusive access to any serial ports when you invoke GRAB, it will
generate an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data.

B The RELEASE Command

Releases all ports to which the program has exclusive access.

Syntax:
RELEASE

If the program does not have exclusive access to any serial ports, RELEASE generates an
error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data.

B The SENDCMD Command

Sends a command to a serial device and waits for a response, if necessary.

Syntax:
SENDCMD port_tag$,device_tag$,command_tag$, command parameters

Arguments:
port_tag$: the tag of the serial port the command’s device is attached to

device_tag$: the tag of the device to send the command to
command_tag$: the tag of the command

The tag of the command is followed by a list of parameters, separated by commas. You
must specify an expression for each of the command’s parameters, in the order in which
they are defined in the device driver. Use a numerical expression for digital and analog
parameters, a string expression for string parameters, and a Boolean expression for
bistate parameters. You can also use a string expression to specify the name of the value
for digital parameters.

If you have requested exclusive access to any serial ports using the GRAB command, you
cannot send commands to any ports other than the ones you have exclusive access to.
If you do not have exclusive access to any ports, you can send commands to any port
you like.

SENDCMD sends the command to the serial port even if the device driver has not been
properly initialized. You can determine whether the device’s initialization sequence has
been sent successfully using the DRVREADY% function.

Page 170

U.P.M.A.C.S. SCL Language Reference Command Reference

If the specified command or device driver has been disabled on the specified serial port,
no data is sent.

If the command expects a response from the device, SENDCMD will wait for the response
and update all data objects and registers that depend on it. You can use the
DRVSUCCESS%, DRVTIMNEOUT%, and DRVERROR% reserves variables to see whether the re-
sponse was received successfully. Use the DRVDATA$, DRVERROR, and DRVERROR$ re-
served variables or the DRVNDATAS$, DRVNERROR, and DRVNERRORS$ functions to retrieve the
data or error codes the device returned.

Note: If you specify a string variable after the tag of the command of a legacy
device driver, SENDCMD will place the response data into that variable. This usage
of SENDCMD is obsolete and should not be used. Use the DRVDATAS reserved vari-
able to access the response data of a legacy device driver command.

In device driver programs, port_tag$ and device_tag$ must be empty strings (**'"). Only
commands of the device the program belongs to can be accessed by device driver
programs.

If port_tag$ is not the tag of a serial port, device_tag$ is not the tag of a device on
that port, or command_tag$ is not the tag of a command in the device’s driver, SENDCMD
generates an error.

If you have exclusive access to any serial ports, but not to the specified serial port,
SENDCMD generates an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data.

B The SENDSTR Command

Sends data to a serial port, appending the line termination and translating CRs.

Syntax:
SENDSTR port_tag$,string$

Arguments:
port_tag$: the tag of the serial port

string$:. the string to send

If you have requested exclusive access to any serial ports using the GRAB command, you
cannot send data to any ports other than the ones you have exclusive access to. If you
do not have exclusive access to any ports, you can send data to any port you like.

SENDSTR appends the line termination specified for the serial ports to the string, and con-
verts any CRs in the string to the line termination. If you wish to send data without ap-
pending a line termination and without CR translation, use the SENDBIN command.

If port_tag$ is not the tag of a serial port, SENDSTR generates an error.

If you have exclusive access to any serial ports, but not to the specified serial port,
SENDSTR generates an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data.

Page 171

U.P.M.A.C.S. SCL Language Reference Command Reference

Sending Custom Commands to Devices That Use Legacy Device Drivers

Legacy device drivers do not support parameters for commands. It is therefore often
necessary to create commands on the fly. For this purpose, you can specify a response in
a legacy device driver to be used for waiting for a response:

Syntax:
SENDSTR port_tag$,string$,device_tag$, response_tag$

or
SENDSTR port_tag$,string$,device_tag$, response_tag$, response_variable$
Arguments:

device_tag$: the tag of the device whose driver contains the response
response_tag$: the tag of the response

response_variable$: avariable that is to receive the device’s response

If you specify a driver and response, SENDSTR will wait for a response using the response
you specified, and all registers that are attached to it are automatically updated. If you
also specify a response variable, the data is placed into that variable as well. Registers
attached to the response are updated in either case. If the command timed out,
response_variable$ will be set to an empty string.

SENDSTR sends the data to the serial port even if the serial port has not been properly
initialized. You can determine whether the device’s initialization sequence has been sent
successfully using the DRVREADY% function.

If device_tag$ is not the tag of a device on the port that uses a legacy device driver, or
response_tag$ is not the tag of a response in that driver, SENDSTR generates an error.

B The SENDBIN Command

Sends data to a serial port.

Syntax:
SENDBIN port_tag$,data$

Arguments:
port_tag$: the tag of the serial port

data$: the data to send

If you have requested exclusive access to any serial ports using the GRAB command, you
cannot send data to any ports other than the ones you have exclusive access to. If you
do not have exclusive access to any ports, you can send data to any port you like.

SENDBIN does not append any line termination, nor does it do any CR translation. If you
wish to send strings using the line termination specified in the serial ports, use the SENDSTR
command.

If port_tag$ is not the tag of a serial port, SENDBIN generates an error.

If you have exclusive access to any serial ports, but not to the specified serial port,
SENDBIN generates an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data.

Page 172

U.P.M.A.C.S. SCL Language Reference Command Reference

Sending Custom Commands to Devices That Use Legacy Device Drivers

Legacy device drivers do not support parameters for commands. It is therefore often
necessary to create commands on the fly. For this purpose, you can specify a response in
a legacy device driver to be used for waiting for a response:

Syntax:
SENDBIN port_tag$,string$,device_tag$, response_tag$

or
SENDBIN port_tag$,string$,device_tag$, response_tag$, response_variable$
Arguments:

device_tag$: the tag of the device whose driver contains the response
response_tag$: the tag of the response

response_variable$: avariable that is to receive the device’s response

If you specify a driver and response, SENDBIN will wait for a response using the response
you specified, and all registers that are attached to it are automatically updated. If you
also specify a response variable, the data is placed into that variable as well. Registers
attached to the response are updated in either case. If the command timed out,
response_variable$ will be set to an empty string.

SENDBIN sends the data to the serial port even if the serial port has not been properly
initialized. You can determine whether the device’s initialization sequence has been sent
successfully using the DRVREADY% function.

If device_tag$ is not the tag of a device on the port that uses a legacy device driver, or
response_tag$ is not the tag of a response in that driver, SENDBIN generates an error.

B The DISABLEDRVY Command

Disables a device on a serial port.

Syntax:
DISABLEDRV port_tag$,device_tag$

Arguments:
port_tag$: the tag of the serial port the device is attached to

device_tag$: the tag of the device

If you have requested exclusive access to any serial ports using the GRAB command, you
cannot disable devices on any ports other than the ones you have exclusive access to. If
you do not have exclusive access to any ports, you can disable devices on any port you
like.

Disabling a device using the DISABLEDRV command is equivalent to selecting “De-
vices...” from the “Settings” menu and disabling it from within the Enable/Disable Devices
dialog.

In device driver programs, port_tag$ and device_tag$ must be empty strings ("**"). Only
the device the program belongs to can be accessed by device driver programs.

If port_tag$ is not the tag of a serial port, or device_tag$ is not the tag of a device on
that port, DISABLEDRV generates an error.

Page 173

U.P.M.A.C.S. SCL Language Reference Command Reference

If you have exclusive access to any serial ports, but not to the specified serial port,
DISABLEDRV generates an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data.

B The ENABLEDRV Command

Enables a device on a serial port.

Syntax:
ENABLEDRV port_tag$,device_tag$

Arguments:
port_tag$: the tag of the serial port the device is attached to

device_tag$: the tag of the device

If you have requested exclusive access to any serial ports using the GRAB command, you
cannot enable devices on any ports other than the ones you have exclusive access to. If
you do not have exclusive access to any ports, you can enable devices on any port you
like.

Enabling a device using the DISABLEDRV command is equivalent to selecting “De-
vices...” from the “Settings” menu and enabling it from within the Enable/Disable Devices
dialog.

In device driver programs, port_tag$ and device_tag$ must be empty strings (***"). Only
the device the program belongs to can be accessed by device driver programs.

If port_tag$ is not the tag of a serial port, or device_tag$ is not the tag of a device on
that port, ENABLEDRV generates an error.

If you have exclusive access to any serial ports, but not to the specified serial port,
ENABLEDRV generates an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data.

B The DISABLECMD Command

Disables a device command.

Syntax:
DISABLECMD port_tag$,device_tag$,command_tag$, command parameters

Arguments:
port_tag$: the tag of the serial port the command’s device is attached to

device_tag$: the tag of the command’s device
command_tag$: the tag of the command

The tag of the command is followed by a list of parameters, separated by commas. You
can specify an expression for each of the command’s parameters, in the order in which
they are defined in the device driver. You should only specify values for parameters that

Page 174

U.P.M.A.C.S. SCL Language Reference Command Reference

are used to distinguish between commands (see Overview Of Commands in the Devel-
oping Device Drivers manual).

Use a numerical expression for digital and analog parameters, a string expression for
string parameters, and a Boolean expression for bistate parameters. You can also use a
string expression to specify the name of the value for digital parameters.

You can leave out one or more parameters from the end. If you leave out parameters,
the command will be disabled for all possible values of that parameter.

If you have requested exclusive access to any serial ports using the GRAB command, you
cannot disable commands on any ports other than the ones you have exclusive access
to. If you do not have exclusive access to any ports, you can disable commands on any
port you like.

Disabling a device command of a disabled device has no immediate effect. Once the
device is re-enabled, however, commands disabled using the DISABLECMD will remain
disabled, whereas enabled commands will become enabled.

In device driver programs, port_tag$ and device_tag$ must be empty strings (*"'"). Only
commands of the device the program belongs to can be accessed by device driver
programs.

If port_tag$ is not the tag of a serial port, device_tag$ is not the tag of a device driver
on that port, or command_tag$ is not the tag of a command in the device’s driver,
DISABLECMD generates an error.

If you have exclusive access to any serial ports, but not to the specified serial port,
DISABLECMD generates an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data.

B The ENABLECMD Command

Enables a device command.

Syntax:
ENABLECMD port_tag$,device_tag$,command_tag$, command parameters

Arguments:
port_tag$: the tag of the serial port the command’s device is attached to
device_tag$: the tag of the command’s device

command_tag$: the tag of the command

The tag of the command is followed by a list of parameters, separated by commas. You
can specify an expression for each of the command’s parameters, in the order in which
they are defined in the device driver. You should only specify values for parameters that
are used to distinguish between commands (see Overview Of Commands in the Devel-
oping Device Drivers manual).

Use a numerical expression for digital and analog parameters, a string expression for
string parameters, and a Boolean expression for bistate parameters. You can also use a
string expression to specify the name of the value for digital parameters.

You can leave out one or more parameters from the end. If you leave out parameters,
the command will be enabled for all possible values of that parameter.

Page 175

U.P.M.A.C.S. SCL Language Reference Command Reference

If you have requested exclusive access to any serial ports using the GRAB command, you
cannot enable commands on any ports other than the ones you have exclusive access
to. If you do not have exclusive access to any ports, you can enable commands on any
port you like.

Enabling a device command of a disabled device has no immediate effect. Once the
device is re-enabled, however, enabled commands will become enabled with it,
whereas commands disabled using the DISABLECMD will remain disabled.

In device driver programs, port_tag$ and device_tag$ must be empty strings (*"'"). Only
commands of the device the program belongs to can be accessed by device driver
programs.

If port_tag$ is not the tag of a serial port, device_tag$ is not the tag of a device on
that port, or command_tag$ is not the tag of a command in the device’s driver,
ENABLECMD generates an error.

If you have exclusive access to any serial ports, but not to the specified serial port,
ENABLECMD generates an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data.

B The SUSPEND Command

Suspends polling on a serial port.

Syntax:
SUSPEND tag$

Arguments:
tag$: the tag of the serial port

You can suspend polling on any port at any time. Even if you have grabbed serial ports,
you can still suspend the ports you have not grabbed.

If polling is already suspended on the port, this command has no effect.

In device driver programs, tag$ must be an empty string (*'**). Only the serial port of the
device the program belongs to can be accessed by device driver programs.
If tag$ is not the tag of a serial port, SUSPEND generates an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data.

B The RESUME Command

Resumes suspended polling on a serial port.

Syntax:
RESUME tag$

Arguments:
tag$: the tag of the serial port

Page 176

U.P.M.A.C.S. SCL Language Reference Command Reference

You can resume polling on any port at any time. Even if you have grabbed serial ports,
you can still resume the ports you have not grabbed.

If polling is not suspended on the port, this command has no effect.

In device driver programs, tag$ must be an empty string (*'**). Only the serial port of the
device the program belongs to can be accessed by device driver programs.

If tag$ is not the tag of a serial port, RESUME generates an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data.

Serial Device Object Commands

B The SETDRVOBJVAL Command

Sets one value of a serial data object.

Syntax:
SETDRVOBJVAL port_tag$,device_tag$,object_tag$, object parameters,value

or
SETDRVOBJVAL port_tag$,device_tag$,object _tag$, object parameters,value$
or

SETDRVOBJVAL port_tag$,device_tag$,object_tag$, object parameters,value%

or

SETDRVOBJVAL port_tag$,device_tag$,object_tag$,\
object parameters,value, index

Arguments:

port_tag$: the tag of the serial port the data object’s device is attached
to

device_tag$: the tag of the data object’s device

object_tag$: the tag of the data object

value, value$, value%: the value to set

index: the 1-based index of the value

The tag of the data object is followed by a list of parameters, separated by commas.
You must specify an expression for each of the object’s parameters, in the order in which
they are defined in the device driver. Use a numerical expression for digital and analog
parameters, a string expression for string parameters, and a Boolean expression for
bistate parameters. You can also use a string expression to specify the name of the value
for digital parameters.

SETDRVOBJVAL sets the value of a serial data object. For analog data objects, it sets a
single value of an analog data object, using “normal” (equal) as the greater / less status.
To set an analog value with a different greater / less status, use SETDRVOBJVALGL.

For bistate data objects, specify a Boolean expression (value¥%) for the value. If value¥% is
true, the data object will go into its ON. If value% is false, it ill go into its OFF state. For digi-

Page 177

U.P.M.A.C.S. SCL Language Reference Command Reference

tal data objects, either specify a numerical expression (value) for the value directly, or a
string expression (value$) for the value’s name. For analog data objects, specify a nu-
merical expression (value), for string data objects a string expression (value$) for the
value.

If the data object is not masked, all other data objects and registers that depend on it
will be updated, if necessary.

For analog objects you can specify the index of the value to set. A data object with a
size of one value has only a value with index 1. A data object with a size of 4 values has
values with indices 1, 2, 3, and 4.

If an analog data object has a size of one value, you do not have to specify an index, as
it is always 1. If the data object has a size of more than one value, and you do not spec-
ify an index, then all existing values will be shifted to the next lower index, and the value
with the highest index will be set to value. This allows you to create a history of values by
calling SETDRVOBJVAL repeatedly at regular intervals.

If the data object was in the error state, all values will be set to value.

To set all the values of an analog data object with a size of more than one value at
once, use the SETDRVOBJVALS command.

In device driver programs, port_tag$ and device_tag$ must be empty strings (***"). Only
data objects of the device the program belongs to can be accessed by device driver
programs.

Internal data objects can only be accessed by device driver programs.

If port_tag$ is not the tag of a serial port, device_tag$ is not the tag of a device on
that port, or object_tag$ is not the tag of a data object in the device’s driver,
SETDRVOBJVAL generates an error.

If you specified the wrong type of expression for the type of data object, or if
object tag$ is the not tag of an analog data object and you specified an index,
SETDRVOBJVAL generates an error.

If index is smaller than 1, larger than the size of the data object, or if it contains fractions,
SETDRVOBJVAL generates an error.

Page 178

U.P.M.A.C.S. SCL Language Reference Command Reference

This command is not available within programs for sources, checksums, and SABus re-
sponse data.

B The SETDRVOBJVALGL Command

Sets one value and its greater / less status of an analog serial data object.

Syntax:

SETDRVOBJVALGL

port_tag$,device_tag$,object tag$,value,greater_less_status

or

SETDRVOBJVALGL
port_tag$,device_tag$,object_tag$,value,greater_less_status, index
Arguments:

port_tag$: the tag of the serial port the data object’s device is attached
to

device_tag$: the tag of the data object’s device

object_tag$: the tag of the data object

value: the value to set

greater_less_status: the greater/ less status of the value

index: the 1-based index of the value

The tag of the data object is followed by a list of parameters, separated by commas.
You must specify an expression for each of the object’s parameters, in the order in which
they are defined in the device driver. Use a numerical expression for digital and analog
parameters, a string expression for string parameters, and a Boolean expression for
bistate parameters. You can also use a string expression to specify the name of the value
for digital parameters.

SETDRVOBJVALGL sets a single value of an analog serial data object. The greater / less
status of the value will be set to “less than” if greater_less_status is less than 0, and to
“greater than” if it is greater than 0. If greater_less_status is equal to zero, the value
will be a normal value (equal). To set the value to a normal value, you can also use the
SETDRVOBJVAL command.

index is the index of the value. A data object with a size of one value has only a value
with index 1. A data object with a size of 4 values has values with indices 1, 2, 3, and 4.

If the data object has a size of one value, you do not have to specify an index, as it is
always 1. If the data object has a size of more than one value, and you do not specify
an index, then all existing values will be shifted to the next lower index, and the value
with the highest index will be set to value. This allows you to create a history of values by
calling SETDRVOBJVALGL repeatedly at regular intervals.

Page 179

U.P.M.A.C.S. SCL Language Reference Command Reference

If the data object was in the error state, all values wil be set to value and
greater_less_status.

If the data object is not masked, all other data objects and registers that depend on it
will be updated, if necessary.

To set all the values and greater / less statuses of an analog data object with a size of
more than one value at once, use the SETDRVOBJVALSGL command.

In device driver programs, port_tag$ and device_tag$ must be empty strings (****). Only
data objects of the device the program belongs to can be accessed by device driver
programs.

Internal data objects can only be accessed by device driver programs.

If port_tag$ is not the tag of a serial port, device_tag$ is not the tag of a device on
that port, or object_tag$ is not the tag of an analog data object in the device’s driver,
SETDRVOBJVALGL generates an error.

If index is smaller than 1, larger than the size of the data object, or if it contains fractions,
SETDRVOBJVALGL generates an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data.

B The SETDRVOBJVALS Command

Sets all the values of an analog serial data object at once.

Syntax:

SETDRVOBJVALS port_tag$,device_tag$,object_tag$, \
object parameters,value_array

Arguments:
port_tag$: the tag of the serial port the data object’s device is attached to

device_tag$: the tag of the data object’s device
object_tag$: the tag of the data object
value_array: an array containing the values to set

Page 180

U.P.M.A.C.S. SCL Language Reference Command Reference

The tag of the data object is followed by a list of parameters, separated by commas.
You must specify an expression for each of the object’s parameters, in the order in which
they are defined in the device driver. Use a numerical expression for digital and analog
parameters, a string expression for string parameters, and a Boolean expression for
bistate parameters. You can also use a string expression to specify the name of the value
for digital parameters.

SETDRVOBJVALS sets all the values of an analog serial data object at the same time, us-
ing “normal” (equal) as the greater / less status. To set values with different greater / less
statuses, use SETDRVOBJVALSGL.

value_array must be a 1l-dimensional array variable that contains the new values.
value_array[1] contains the value with index 1, value_array[2] contains the value
with index 2, etc.. The index of the first value is 1.

Do not specify an index for value_array. Only use the array name, without subscript.

If the data object is not masked, all other data objects and data objects that depend on
it will be updated, if necessary.

To set a single value of an analog data object, use the SETDRVOBJVAL command.

In device driver programs, port_tag$ and device_tag$ must be empty strings (*'**). Only
data objects of the device the program belongs to can be accessed by device driver
programs.

Internal data objects can only be accessed by device driver programs.

If port_tag$ is not the tag of a serial port, device_ tag$ is not the tag of a device on
that port, or object_tag$ is not the tag of an analog data object in the device’s driver,
SETDRVOBJVALS generates an error.

If value_array is not a 1-dimensional array, SETDRVOBJVALS generates an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data.

B The SETDRVOBJVALSGL Command

Sets all the values and greater / less status of an analog serial data object at once.

Syntax:
SETDRVOBJVALSGL port_tag$,device_tag$,object tag$, \

object parameters,value_array,greater_less_array

Arguments:

port_tag$: the tag of the serial port the data object’s device is attached to
device_tag$: the tag of the data object’s device

object_tag$: the tag of the data object

value_array: an array containing the value tos set

greater_less_array: an array containing the greater / less status of the values

The tag of the data object is followed by a list of parameters, separated by commas.
You must specify an expression for each of the object’s parameters, in the order in which
they are defined in the device driver. Use a numerical expression for digital and analog
parameters, a string expression for string parameters, and a Boolean expression for

Page 181

U.P.M.A.C.S. SCL Language Reference Command Reference

bistate parameters. You can also use a string expression to specify the name of the value
for digital parameters.

SETDRVOBJVALS sets all the values of an analog serial data object at the same time.

value_array and greater_less_array must be a 1-dimensional array variable that
contains the new values and their greater / less statuses. value array[1l] and
greater_less_array[1l] contain the information for the value with index 1,
value_array[2] and greater_less_array[2] contain the information for the value
with index 2, etc.. The index of the first value is 1.

value_array contains the actual values. greater_less_array contains the greater less
flags. The greater / less status of a value will be set to “less than” if the corresponding
element of greater_less_array is less than 0, and to “greater than” if it is greater than
0. If an element is equal to zero, the corresponding value will be a normal value (equal).
To set all the values to normal values, you use the SETDRVOBJVALS command.

Do not specify an index for value_array or greater_less_array. Only use the array
names, without subscript.

If the data object is not masked, all other data objects and data objects that depend on
it will be updated, if necessary.

To set a single value and greater / less status of an analog data object, use the
SETDRVOBJVALGL command.

In device driver programs, port_tag$ and device_tag$ must be empty strings (*'**). Only
data objects of the device the program belongs to can be accessed by device driver
programs.

Internal data objects can only be accessed by device driver programs.

If port_tag$ is not the tag of a serial port, device_tag$ is not the tag of a device on
that port, or object_tag$ is not the tag of an analog data object in the device’s driver,
SETDRVOBJVALS generates an error.

If value_array or greater_less_array is not a 1-dimensional array, SETDRVOBJVALSGL
generates an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data.

B The MASKDRVOBJ Command

Masks a serial data object.

Syntax:
MASKDRVOBJ port_tag$,device_tag$,object_tag$, object parameters

Arguments:
port_tag$: the tag of the serial port the data object’s device is attached to

device_tag$: the tag of the data object’s device
object_tag$: the tag of the data object

The tag of the data object is followed by a list of parameters, separated by commas.
You must specify an expression for each of the object’s parameters, in the order in which
they are defined in the device driver. Use a numerical expression for digital and analog

Page 182

U.P.M.A.C.S. SCL Language Reference Command Reference

parameters, a string expression for string parameters, and a Boolean expression for
bistate parameters. You can also use a string expression to specify the name of the value
for digital parameters.

You can leave out one or more parameters from the end. If you leave out parameters,
the data object will be unmasked for all possible values of that parameter.

Masking a data object using the MASKDRVOBJ command applies a special mask to the
data object. MASKDRVOBJ is independent of automatic masking.

Use UNMASKDRVOBJ to remove the special mask.

In device driver programs, port_tag$ and device_tag$ must be empty strings (*"'"). Only
data objects of the device the program belongs to can be accessed by device driver
programs.

Internal data objects can only be accessed by device driver programs.

If port_tag$ is not the tag of a serial port, device tag$ is not the tag of a device on
that port, or object tag$ is not the tag of a data object in the device’s driver,
MASKDRVOBJ generates an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data.

B The UNMASKDRVOBJ Command

Unmasks a serial data object.

Syntax:
UNMASKDRVOBJ port_tag$,device_tag$,object_tag$, object parameters

Arguments:
port_tag$: the tag of the serial port the data object’s device is attached to

device_tag$: the tag of the data object’s device
object_tag$: the tag of the data object

The tag of the data object is followed by a list of parameters, separated by commas.
You must specify an expression for each of the object’s parameters, in the order in which
they are defined in the device driver. Use a numerical expression for digital and analog
parameters, a string expression for string parameters, and a Boolean expression for
bistate parameters. You can also use a string expression to specify the name of the value
for digital parameters.

You can leave out one or more parameters from the end. If you leave out parameters,
the data object will be unmasked for all possible values of that parameter.

Unmasking a data object using the UNMASKDRVOBJ command removes the special mask
applied using the MASKDRVOBJ command. UNMASKDRVOBJ is independent of manual
masking and of automatic masking. To unmask a data object as if unmasked manually
by the operator, use the UNMASK command instead.

In device driver programs, port_tag$ and device_tag$ must be empty strings (****). Only
data objects of the device the program belongs to can be accessed by device driver
programs.

Internal data objects can only be accessed by device driver programs.

Page 183

U.P.M.A.C.S. SCL Language Reference Command Reference

If port_tag$ is not the tag of a serial port, device_tag$ is not the tag of a device on
that port, or object tag$ is not the tag of a data object in the device’s driver,
UNMASKDRVOBJ generates an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data.

Logging Commands

B The LOG Command

Writes text to the log file and log window.

Syntax:
LOG list of expressions

LOG is followed by a list of expressions of any type (numerical, string, or Boolean), sepa-
rated by commas or semicolons. String expressions are written to the log directly. Num-
bers are written in decimal format, using exponential notation whenever necessary. Boo-
lean values are written as “true” or “false.”

Expressions separated by a semicolon are placed immediately next to each other, ex-
pressions separated by a comma in the list are separated by a tab in the log.

The log entry is preceded by the current time and date.

LOG writes the message to both the log file and the log window. You can log to the log
file only using the FILELOG command.

Unlike the PROMPT command, you must not end the list of expressions with a semicolon or
comma.

This command is not available within programs for sources, checksums, and SABus re-
sponse data.

B The LOGR Command

Writes red text to the log file and log window.

Syntax:
LOGR list of expressions

This command behaves just like the LOG command, but the log message will appear in
red in the log window and the log file browser.

This command is not available within programs for sources, checksums, and SABus re-
sponse data.

B The LOGG Command

Writes green text to the log file and log window.

Page 184

U.P.M.A.C.S. SCL Language Reference Command Reference

Syntax:
LOGG list of expressions

This command behaves just like the LOG command, but the log message will appear in
green in the log window and the log file browser.

This command is not available within programs for sources, checksums, and SABus re-
sponse data.

B The LOGB Command

Writes blue text to the log file and log window.

Syntax:
LOGB list of expressions

This command behaves just like the LOG command, but the log message will appear in
blue in the log window and the log file browser.

This command is not available within programs for sources, checksums, and SABus re-
sponse data.

B The LOGC Command

Writes cyan (sky blue) text to the log file and log window.

Syntax:
LOGC list of expressions

This command behaves just like the LOG command, but the log message will appear in
cyan in the log window and the log file browser.

This command is not available within programs for sources, checksums, and SABus re-
sponse data.

B The LOGM Command

Writes magenta text to the log file and log window.

Syntax:
LOGM list of expressions

This command behaves just like the LOG command, but the log message will appear in
magenta in the log window and the log file browser.

This command is not available within programs for sources, checksums, and SABus re-
sponse data.

B The LOGY Command

Writes yellow (actually, orange) text to the log file and log window.

Syntax:
LOGY list of expressions

Page 185

U.P.M.A.C.S. SCL Language Reference Command Reference

This command behaves just like the LOG command, but the log message will appear in
yellow in the log window and the log file browser.

This command is not available within programs for sources, checksums, and SABus re-
sponse data.

B The FILELOG Command

Writes text to the log file, but not to the log window.

Syntax:
FILELOG list of expressions

FILELOG is followed by a list of expressions of any type (numerical, string, or Boolean),
separated by commas or semicolons. String expressions are written to the log file directly.
Numbers are written in decimal format, using exponential notation whenever necessary.
Boolean values are written as “true” or “false.”

Expressions separated by a semicolon are placed immediately next to each other, ex-
pressions separated by a comma in the list are separated by a tab in the log file.

The log file entry is preceded by the current time and date.

FILELOG writes the message to the log file only, and not to the log window. To log the
message to the log window as well, use the LOG command.

Unlike the PROMPT command, you must not end the list of expressions with a semicolon or
comma.

This command is not available within programs for sources, checksums, and SABus re-
sponse data.

B The FILELOGR Command

Writes red text to the log file, but not to the log window.

Syntax:
FILELOGR list of expressions

This command behaves just like the FILELOG command, but the log message will appear
inred in the log file browser.

This command is not available within programs for sources, checksums, and SABus re-
sponse data.

B The FILELOGG Command

Writes green text to the log file, but not to the log window.

Syntax:
FILELOGG list of expressions

This command behaves just like the FILELOG command, but the log message will appear
in green in the log file browser.

Page 186

U.P.M.A.C.S. SCL Language Reference Command Reference

This command is not available within programs for sources, checksums, and SABus re-
sponse data.

B The FILELOGB Command

Writes blue text to the log file, but not to the log window.

Syntax:
FILELOGB list of expressions

This command behaves just like the FILELOG command, but the log message will appear
in blue in the log file browser.

This command is not available within programs for sources, checksums, and SABus re-
sponse data.

B The FILELOGC Command

Writes cyan (sky blue) text to the log file, but not to the log window.

Syntax:
FILELOGC list of expressions

This command behaves just like the FILELOG command, but the log message will appear
in cyan in the log file browser.

This command is not available within programs for sources, checksums, and SABus re-
sponse data.

B The FILELOGM Command

Writes magenta text to the log file, but not to the log window.

Syntax:
FILELOGM list of expressions

This command behaves just like the FILELOG command, but the log message will appear
in magenta in the log file browser.

This command is not available within programs for sources, checksums, and SABus re-
sponse data.

B The FILELOGY Command

Writes yellow (actually, orange) text to the log file, but not to the log window.

Syntax:
FILELOGY list of expressions

This command behaves just like the FILELOG command, but the log message will appear
in yellow in the log file browser.

This command is not available within programs for sources, checksums, and SABus re-
sponse data.

Page 187

U.P.M.A.C.S. SCL Language Reference Command Reference

Data Encoding/Decoding Commands

B The PARSEDEC Command

Decodes a value contained within a string using a decoder and a position variable.

Syntax:
PARSEDEC string$,decoder,result_variable,position_variable

or
PARSEDEC string$,decoder,result_variable$,position _variable

or
PARSEDEC string$,decoder,result_variable%,position_variable
Arguments:

string$: the data string that contains the value

decoder: the number of the decoder to use
result_variable: a variable to receive the decoded number

result_variable$: a variable to receive the decoded string
result_variable%: a variable to receive the decoded Boolean value
position_variable: the variable that contains the current position within the string

PARSEDEC decodes a value from string$, starting with the character at the position
contained in position_variable. After the value has been decoded,
position_variable is set to the position of the first character after the value. This allows
you to then call PARSEDEC again to decode another value using the same position vari-
able.

The first character in a string is position number 1. If you set position_variable to 0 be-
fore calling PARSEDEC, parsing will start at the first character in the string (same as
position_variable =1).

If the value was not found at the specified position, PARSEDEC sets position_variable
to 0.

To parse a string value using a decoder you create on the fly instead of a pre-defined
one, use the PARSEREGEX command. To skip over an encoded value without storing it in
a variable, use the SKIPDEC command.

To decode a single value from a string, use the DECODE, DECODES, or DECODE% function.

If decoder is not the number of a decoder for the right type of value, or if the value of
position_variable is less than 0 or contains fractions, PARSEDEC generates an error.

B The PARSEREGEX Command
Decodes a string value contained within a string using three regular expressions and a

position variable.

Syntax:
PARSEREGEX

string$, prefix$, patterns$,suffix$,result_variable$,position_variable

Page 188

U.P.M.A.C.S. SCL Language Reference Command Reference

Arguments:

string$: the data string that contains the value
prefix$: the prefix pattern, or "*** for none
pattern$: the data pattern

suffix$: the suffix pattern, or **** for none

result_variable$: a variable to receive the decoded string
position_variable: the variable that contains the current position within the string

The prefix pattern, if any, describes any data that appears in string$ before the en-
coded string. The data pattern describes the encoded string itself, and the suffix pattern,
if any, describes data that must appear after the encoded string (e.g. a terminating
character).

See Appendix A: Regular Expressions in the Developer’s Manual for details on regular ex-
pressions.

PARSEREGEX decodes a string value from string$, starting with the character at the po-
sition contained in position_variable. After the value has been decoded,
position_variable is set to the position of the first character after the value. This allows
you to then call PARSEREGEX again to decode another value using the same position
variable.

The first character in a string is position number 1. If you set position_variable to 0 be-
fore calling PARSEREGEX, parsing will start at the first character in the string (same as
position_variable =1).

If the wvalue was not found at the specified position, PARSEREGEX sets
position_variableto 0.

To parse a value using a pre-defined decoder, use the PARSEDEC command. To skip over
data without storing it in a variable, use the SKIPREGEX command.

To decode a single value from a string, use the DECODEREGEX$ function.

If pattern$ is not a valid regular expression, or if prefix$ or suffix$ is not an empty
string or a valid regular expression, PARSEREGEX generates an error.

If the value of position_variable is less than 0, or if it contains fractions, PARSEREGEX
generates an error.

B The SKIPDEC Command

Skips over a value contained within a string using a decoder and a position variable.

Syntax:
SKIPDEC string$,decoder,position_variable

Arguments:
string$: the data string that contains the value

decoder: the number of the decoder to use
position_variable: the variable that containsthe current position within the string

SKIPDEC skips over a value encoded in string$ starting with the character at the posi-
tion contained in position_variable. It sets position_variable to the position of the

Page 189

U.P.M.A.C.S. SCL Language Reference Command Reference

first character after the value. This allows you to then call PARSEDEC to decode the next
value using the same position variable.

The first character in a string is position number 1. If you set position_variable to 0 be-
fore calling SKIPDEC, it will look for the value at the first character in the string (same as
position_variable =1).

If the value was not found at the specified position, SKIPDEC sets position_variable to
0.

To skip arbitrary data using a regular expression instead of a pre-defined decoder, use
the SKIPREGEX command. To decoded a value and store it in a variable, use the
PARSEDEC command.

If decoder is not the number of a decoder, or if the value of position_variable is less
than 0 or contains fractions, SKIPDEC generates an error.

B The SKIPREGEX Command

Skips arbitrary data in a string using a regular expression and a position variable.

Syntax:
SKIPREGEX string$,regex$,position_variable

Arguments:
string$: the data string that contains the value

regexs: the regular expression
position_variable: the variable that containsthe current position within the string

See Appendix A: Regular Expressions in the Developer’s Manual for details on regular ex-
pressions.

SKIPREGEX skips over all data in string$ that matches regex$, starting with the charac-
ter at the position contained in position_variable. It sets position_variable to the
position of the first character after the value. This allows you to then call PARSEDEC or
PARSEREGEX to decode a value that appears after the data using the same position
variable.

The first character in a string is position number 1. If you set position_variable to 0 be-
fore calling SKIPREGEX, it will look for the data at the first character in the string (same as
position_variable =1).

If matching data was not found at the specified position, SKIPREGEX sets
position_variable to 0.

To skip an encoded value using a decoder, use the SKIPDEC command. To decoded a
value and store it in a variable, use the PARSEDEC or PARSEREGEX command.

If regex$ is not a valid regular expression, or if the value of position_variable is less
than 0 or contains fractions, SKIPREGEX generates an error.

B The APPENDSTR Command

Appends one or more strings to the value of a string variable.

Page 190

U.P.M.A.C.S. SCL Language Reference Command Reference

Syntax:
APPENDSTR string_variable$,stringl$,string2$, etc.

Arguments:
string_variable$: the string variable to append data to

stringl$, string2$, etc.: the strings to append

B The APPENDCSTR Command

Appends one or more strings to the value of a string variable. The strings can contain
non-printable characters encoded in special backslash sequences similar to those C
compilers use.

Syntax:
APPENDCSTR string_variable$,C_stringl$,C_string2$, etc.

Arguments:
string_variable$: the string variable to append data to

C_stringl$, C_string2$, etc.: the C style strings to append

APPENDCSTR enables you to easily specify strings containing non-printable characters
(ASCIl 00-1F and 7F-FF). To specify a non-printable character, use any of the following
sequences of characters:

Sequence Character Code (hexadeci-
mal)

\O null character ~ $00

\b backspace $08

\t tab $09

\n linefeed $0A

A\% vertical tab $0B

\f form feed $0C

\r cariage re- $0D

turn

to specify any other non-printable character, use \x followed by two hexadecimal digits
specifying the character code. Here are some examples:

Sequence Character Code (hexadeci-
mal)
\x02 start transmission $02
\x03 end of transmis- $03
sion
\xFF delete $FF
\XxB7 $B7
\Xx69 capital letter “E” $69

To specify a backslash, use two backslashes in a row:

Page 191

U.P.M.A.C.S. SCL Language Reference Command Reference

Sequence Character Code (hexadeci-

mal)
\\ backslash $92

Printable characters, with the exception of the backslash and double quotes, can just be
entered plainly. If you feel so inclined, however, you can use a backslash followed by
that character.

Here are some examples:

Sequence Character Code (hexadeci-
mal)
\a letter “a” $97
\6 digit six $56
\/ slash $47
\R capital letter $82
g

To convert a single C style string, use the CCNV$ function.

Note: APPENDCSTR would theoretically convert \" to the double quote character
if it encountered it in a string. However, since the SCL interpreter will not allow
double quotes in string literals, you cannot use the \" sequence to specify double
guotes. To generate the string:

Hi! My name is Fred "Barbarossa" Staufer!

You cannot use the following command:

APPENDCSTR string variable$, \

You can use the \x character sequence and specify the ASCIl code for the dou-
ble quotes character instead:

APPENDCSTR string _variable$,\
"Hi! My name is Frederick \x34Barbarossa\x34 Staufer!"

You can also use the QUT$ constant with APPENDSTR instead of APPENDCSTR:

APPENDSTR string variable$,\
"Hi! My name is Frederick ",QUTS$,"Barbarossa',QUT$,\
" Staufer!™

If C_string$ ends in a backslash, or if it contains a \x that is not followed by two hexa-
decimal digits, APPENDCSTR generates an error.

Page 192

U.P.M.A.C.S. SCL Language Reference Command Reference

B The APPENDHEX Command

Appends one or more strings consisting of arbitrary character codes written out in hexa-
decimal to the value of a string variable.

Syntax:
APPENDHEX string_variable$,hex valuesl$,hex values2$,hex_values3$, etc.

Arguments:
string_variable$: the string variable to append data to

hex_valuesl$, hex_values2$, etc.: the strings with hex values are written out to ap-
pend

The hex value strings have to be strings consisting of two digit hexadecimal values sepa-
rated by single spaces. APPENDHEX would append the string:

“"4F 7A 6F 6E 65 21"

as the following string:

""Ozone!""

To covert a single hex value string, use the HCNV$ function.

If any of the hex value strings do not conform to the format described above, or if there
are any characters before the first or after the last hex value (including spaces),
APPENDHEX generates an error.

B The APPENDENC Command

Appends one or more values to the value of a string variable using a data encoder.

Syntax:
APPENDENC string_variable$,encoder,numberl,number2, etc.

or
APPENDENC string_variable$,encoder,stringl$,string2$, etc.
or

APPENDENC string_variable$,encoder,Booleanl%,Boolean2%, etc.

Arguments:
string_variable$: the string variable to append data to

encoder: the number of the encoder to use
numberl$, number2$, etc.: the numbers to encode
stringl$, string2$, etc.: the strings to encode

Booleanl%, Boolean2%, etc.: the Boolean values to encode

APPENDENC encodes the values using the specified encoding and appends them to the

value of the string variable. No separators are placed between the different values.

To encode a single value to a string, use the ENCODE$ function.

Page 193

U.P.M.A.C.S. SCL Language Reference Command Reference

If encoder is not the number of an encoder for the right type of value, APPENDENC gen-
erates an error.

Miscellaneous Commands

B The SETPVAR Command

Sets the value of a variable of the parent program.

Syntax:
SETPVAR num_var_name$, value

or
SETPVAR str_var_name$, value$

or
SETPVAR bool var name$, value%

Arguments:

num_var_name$: the name of a numerical variable of the parent program
str_var_name$: the name of a string variable of the parent program
bool_var_name$: the name of a Boolean variable of the parent program

value, value$, value%: the value to set the variable to

The parent program is the program that called this program using the CALL, DRVCALL,
CALLRMT or command.

SETPVAR cannot be used to access array elements.

If the name specified is not a valid name for a variable, if it is the name of a reserved SCL
keyword, or if it is the name of an array variable, SETPVAR generates an error.

If the type of the value does not correspond to the type of the variable specified,
SETPVAR generates an error.

This command is only available within child programs.

B The DELAY Command

Waits for a specified amount of time.

Syntax:
DELAY seconds

or
DELAY seconds,result_variable%

Arguments:
seconds: the number of seconds to wait

result_variable%: a variable toreceive the abort status

DELAY waits the specified number of seconds.

Page 194

U.P.M.A.C.S. SCL Language Reference Command Reference

If you specify a result variable, then the wait will end immediately if the station is closed.
result_variable wil be true if the wait was successful, and false if the wait was
aborted. You should specify a result variable for delays longer than about 2 seconds to
allow the database to be closed while the program is running.

If seconds is not between 0 and 4,294,967.295, DELAY generates an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data.

B The CALL Command

Calls another program as a child program.

Syntax:
CALL tag$

or

CALL tag$, list of arguments and values

Arguments:
tag$: the tag of the program to call

If you use CALL within a normal program (defined outside a device driver), it will call a
normal program. If you use CALL from within a device driver program, it will call a device
driver program from the same port and device.

CALL will wait until the child program has finished executing. If an error occurs in the child
program, CALL will end the parent program.

All commands and functions that are available within the parent program are also
available within the child. A child program of an RTS control, for example, can use the
RTSPRM$ function, and the RTSSEND and RTSERROR commands. Commands that are not
available within the parent, are also not available from within the child. You cannot use
the PRINT command, for example, in a program that was called by a program used in a
processor source.

Child programs of programs for processor and summary sources have the default limit of
500 instructions that their parents have.

Child programs can only use the GRAB command if the parent does not have exclusive
access to any serial ports. If the parent does have exclusive access to any ports, the child
program can access only those ports. Child programs cannot release ports the parent
has grabbed, and any ports the child has grabbed will be released when it ends.

CALL can include an argument list, to be used as program arguments for the child pro-
gram. The argument list consists of pairs of expressions, specifying the argument’s name
and its value. The first expression in the pair has to be a string, and has to specify a valid
SCL variable name, including the type suffix. The second expression has to specify a
value of the correct type for the argument.

If tag$ is not the tag of an SCL program, CALL generates an error.

If an argument name is not a valid SCL variable name, if any argument name appears
twice, or if the type any of the argument values does not match the type of the argu-
ment, CALL generates an error.

Page 195

U.P.M.A.C.S. SCL Language Reference Command Reference

B The DRVCALL Command

Calls a device driver program as a child program.

Syntax:
DRVCALL port_tag$,device_tag$,program_tag$

or

DRVCALL port_tag$,device_tag$,program_tag$, list of arguments and values

Arguments:
port_tag$: the tag of the serial port the program’s device is attached to

device_tag$: the tag of the device whose driver contains the program
program_tag$: the tag of the program to call

DRVCALL will call a device driver program. If you use DRVCALL from within a device driver
program, port_tag$ and device_tag$ must be empty strings (*"**). Only programs of the
device the parent program belongs to can be called by device driver programs. You
should use CALL instead of DRVCALL within device driver programs.

DRVCALL will wait until the child program has finished executing. If an error occurs in the
child program, DRVCALL will end the parent program.

All commands and functions that are available within the parent program are also
available within the child. A child program of an RTS control, for example, can use the
RTSPRM$ function, and the RTSSEND and RTSERROR commands. Commands that are not
available within the parent, are also not available from within the child. You cannot use
the PRINT command, for example, in a program that was called by a program used in a
processor source.

Child programs of programs for processor and summary sources have the default limit of
500 instructions that their parents have.

Child programs can only use the GRAB command if the parent does not have exclusive
access to any serial ports. If the parent does have exclusive access to any ports, the child
program can access only those ports. Child programs cannot release ports the parent
has grabbed, and any ports the child has grabbed will be released when it ends.

DRVCALL can include an argument list, to be used as program arguments for the child
program. The argument list consists of pairs of expressions, specifying the argument’s
name and its value. The first expression in the pair has to be a string, and has to specify a
valid SCL variable name, including the type suffix. The second expression has to specify a
value of the correct type for the argument.

If port_tag$ is not the tag of a serial port, device_tag$ is not the tag of a device on
that port, or program_tag$ is not the tag of an SCL program in the device’s driver,
DRVCALL generates an error.

If an argument name is not a valid SCL variable name, if any argument name appears
twice, or if the type any of the argument values does not match the type of the argu-
ment, DRVCALL generates an error.

B The CALLRMT Command

Calls a program on a remote computer as a child program.

Page 196

U.P.M.A.C.S. SCL Language Reference Command Reference

Syntax:
CALLRMT ip_address$, tag$

or
CALLRMT ip_address$, tag$, list of arguments and values

or
CALLRMT ip_address$,tag$,result_variable%

or

CALLRMT ip_address$,tag$, list of arguments and values, result_variable%

Arguments:
ip_address$: the IP address of the server
tag$: the tag of the program to call

result_variable%: a variable to receive the success/failure status

ip_address$ is the remote computer’s IP address in dotted form, e.g.
'"192.168.1.100". The first component of an IP address cannot be 0, 127, or greater
than 223, except for the loopback address 127.0.0.1.

CALLRMT attempts connect to another computer running U.P.M.A.C.S. and call a pro-
gram on that computer. If you do not specify a result variable, CALLRMT will end the pro-
gram if the connection cannot be established. If you do specify a result variable, it will be
set to true if the connection could be established, and false if it could not.

CALLRMT will wait until the child program has finished executing. If an error occurs in the
child program, CALLRMT will end the parent program. The programs executed using
CALLRMT run on the remote computer, and have access to the serial ports, registers, etc.
of the remote computer’s local station, not that of the parent program’s computer.

CALLRMT can only run programs on a remote computer if the following apply:

the remote computer is accessible via TCP/IP
U.P.M.A.C.S. is running on the remote computer

a local station file has been loaded on the remote computer

YV V VYV V

remote connections are enabled in the remote computer’s network security set-
tings

» insecure remote control is enabled in the remote computer’s network security set-
tings

» remote connections have not been disabled using the STOPNET command on the
remote computer

Contrary to the CALL command, a program started using the CALLRMT command does
not inherit access to any serial ports from the program that invoked it. Programs run from
RTS controls cannot use the RTSPRM$ function, or the RTSSEND and RTSERROR com-
mands. However, commands that are not available within the parent program are also
not avaliable wihtin the remote child program. Programs run from SABus command pro-
grams and RTS controls therefore cannot use user message or dialog commands.

Page 197

U.P.M.A.C.S. SCL Language Reference Command Reference

Access to the GRAB command is not limited in the same way it is for programs executed
using CALL. Any program executed using CALLRMT can grab serial ports, regardless of
whether the parent has grabbed ports or not.

Programs executed using the CALLRMT command can access the parent program’s user
variables using the SETPVAR command and the PVAR, PVARS$, and PVAR% functions.

Any dialogs or user messages that the remote program pops up will be shown on the
same computer as those of the parent program (usually the local computer of the par-
ent program).

CALLRMT can include an argument list, to be used as program arguments for the child
program. The argument list consists of pairs of expressions, specifying the argument’s
name and its value. The first expression in the pair has to be a string, and has to specify a
valid SCL variable name, including the type suffix. The second expression has to specify a
value of the correct type for the argument.

If ip_address$ is not a valid IP address, or if tag$ is not the tag of an SCL program on
the remote computer, CALLRMT generates an error.

If an argument name is not a valid SCL variable name, if any argument name appears
twice, or if the type any of the argument values does not match the type of the argu-
ment, CALLRMT generates an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data.

B The RUN Command

Runs another program as an independent program.

Syntax:
RUN tag$

or
RUN tag$,delay_seconds

or

RUN tag$, list of arguments and values
or

RUN tag$, list of arguments and values,delay_seconds

Arguments:
tag$: the tag of the program to run

delay_seconds: the amount of time to wait before running the program (0 to
4,294,967.295s)

If you use RUN within a normal program (defined outside a device driver), it will run a
normal program. If you use RUN from within a device driver program, it will run a device
driver program from the same port and device.

RUN will run the specified program as an independent program. It does not wait until the
programs has finished, but returns immediately.

Page 198

U.P.M.A.C.S. SCL Language Reference Command Reference

Contrary to the CALL command, a program started using the RUN command does not
inherit access to any serial ports from the program that invoked it. Programs run from RTS
controls cannot use the RTSPRM$ function, or the RTSSEND and RTSERROR commands.

RUN can include an argument list, to be used as program arguments for the new pro-
gram. The argument list consists of pairs of expressions, specifying the argument’s name
and its value. The first expression in the pair has to be a string, and has to specify a valid
SCL variable name, including the type suffix. The second expression has to specify a
value of the correct type for the argument.

If tag$ is not the tag of an SCL program, or if delay_seconds is not between 0 and
4,294,967.295, RUN generates an error.

If an argument name is not a valid SCL variable name, if any argument name appears
twice, or if the type any of the argument values does not match the type of the argu-
ment, RUN generates an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data.

B The DRVRUN Command

Runs a device driver program as an independent program.

Syntax:
DRVRUN port_tag$,device_tag$, program_tag$

or
DRVRUN port_tag$,device_tag$,program_tag$,delay_seconds

or

DRVRUN port_tag$,device_tag$,program_tag$, list of arguments and values

or
DRVRUN port_tag$,device_tag$,program_tag$, list of arguments and
values,delay_seconds

Arguments:

port_tag$: the tag of the serial port the program’s device is attached to

device_tag$: the tag of the device whose driver contains the program
program_tag$: the tag of the program to run

delay_seconds: the amount of time to wait before running the program (0 to
4,294,967.295s)

DRVRUN will run a device driver program. If you use DRVRUN from within a device driver
program, port_tag$ and device_ tag$ must be empty strings (*"'"). Only programs of the
device the parent program belongs to can be run by device driver programs. You should
use RUN instead of DRVRUN within device driver programs.

DRVRUN will run the specified program as an independent program. It does not wait until
the programs has finished, but returns immediately.

Contrary to the DRVCALL command, a program started using the DRVRUN command
does not inherit access to any serial ports from the program that invoked it. Programs run

Page 199

U.P.M.A.C.S. SCL Language Reference Command Reference

from RTS controls cannot use the RTSPRM$ function, or the RTSSEND and RTSERROR com-
mands.

DRVRUN can include an argument list, to be used as program arguments for the new
program. The argument list consists of pairs of expressions, specifying the argument’s
name and its value. The first expression in the pair has to be a string, and has to specify a
valid SCL variable name, including the type suffix. The second expression has to specify a
value of the correct type for the argument.

If port_tag$ is not the tag of a serial port, device_tag$ is not the tag of a device on
that port, or program_tag$ is not the tag of an SCL program in the device’s driver,
DRVDRVRUN generates an error.

If delay_seconds is not between 0 and 4,294,967.295, DRVRUN generates an error.

If an argument name is not a valid SCL variable name, if any argument name appears
twice, or if the type any of the argument values does not match the type of the argu-
ment, DRVRUN generates an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data.

B The RUNRMT Command

Runs a program on a remote computer as a child program.

Syntax:
RUNRMT ip_address$,tag$

or
RUNRMT ip_address$,tag$, list of arguments and values

or
RUNRMT ip_address$,tag$,result_variable%

or

RUNRMT ip_address$,tag$, list of arguments and values, result_variable%

Arguments:
ip_address$: the IP address of the server
tag$: the tag of the program to run

result_variable%: a variable to receive the success/failure status

ip_address$ is the remote computer’s IP address in dotted form, e.g.
'"192.168.1.100". The first component of an IP address cannot be 0, 127, or greater
than 223, except for the loopback address 127.0.0.1.

RUNRMT attempts connect to another computer running U.P.M.A.C.S. and run a program
on that computer. If you do not specify a result variable, RUNRMT will end the program if
the connection cannot be established. If you do specify a result variable, it will be set to
true if the connection could be established, and false if it could not.

RUNRMT will run the specified program as an independent program. It does not wait until
the programs has finished, but returns immediately.

RUNRMT can only run programs on a remote computer if the following apply:

Page 200

U.P.M.A.C.S. SCL Language Reference Command Reference

the remote computer is accessible via TCP/IP
U.P.M.A.C.S. is running on the remote computer

a local station file has been loaded on the remote computer

YV V VYV V

remote connections are enabled in the remote computer’s network security set-
tings

» insecure remote control is enabled in the remote computer’s network security set-
tings

» remote connections have not been disabled using the STOPNET command on the
remote computer

Any dialogs or user messages that the remote program pops up will be shown on the
same computer as those of the parent program (usually the local computer of the par-
ent program).

RUN can include an argument list, to be used as program arguments for the new pro-
gram. The argument list consists of pairs of expressions, specifying the argument’s name
and its value. The first expression in the pair has to be a string, and has to specify a valid
SCL variable name, including the type suffix. The second expression has to specify a
value of the correct type for the argument.

If ip_address$ is not a valid IP address, or if tag$ is not the tag of an SCL program on
the remote computer, RUNRMT generates an error.

If an argument name is not a valid SCL variable name, if any argument name appears
twice, or if the type any of the argument values does not match the type of the argu-
ment, RUNRMT generates an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data.

B The LAUNCH Command

Launches a Windows application.

Syntax:
LAUNCH command_line$

Arguments:
command_line$: the command line of the program

LAUNCH does not wait until the application has finished, but returns immediately.

If Windows reports that the application specified by command_line$ does not exists or
cannot be launched for other reasons, LAUNCH generates an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data.

B The STOPNET Command

Disables remote connections.

Page 201

U.P.M.A.C.S. SCL Language Reference Command Reference

Syntax:
STOPNET

STOPNET closes all remote connections from other computers, including connections to
the local station, insecure remote control, and remote register source connection, and
disables further connections.

If networking is already disabled, STOPNET has no effect.

This command is not available within programs for sources, checksums, and SABus re-
sponse data.

B The STARTNET Command

Enables remote connections.

Syntax:

STARTNET

STARTNET enables remote connections if they have been enabled using STOPNET. If
networking has not been disabled using STOPNET, STARTNET has no effect. STARTNET
does not alter the network security settings, and does not enable networking if it is dis-
abled in the network security settings.

This command is not available within programs for sources, checksums, and SABus re-
sponse data.

Special Purpose Commands

B The SABUSREPLY Command

Sends a reply to an uplink port that executed an SABus command.

Syntax:
SABUSREPLY

or
SABUSREPLY list of expressions

Programs of SABus commands use the SABUSREPLY command to send the response to
the uplink port that invoked the command. If necessary, you can specify data to be in-
cluded in the reply.

SABUSREPLY may be followed by a list of expressions of any type (humerical, string, or
Boolean), separated by commas or semicolons. String expressions are included in the
response as is. Numbers are written out in decimal format, using exponential notation
whenever necessary. Boolean values are included as “true” or “false.”

Expressions separated by a semicolon are placed immediately next to each other, ex-
pressions separated by a comma in the list are separated by a space character.

It is not necessary to specify the packet header and footer for the response packet in the
command. SABUSREPLY automatically adds the ACK, address, opcode, ETX, and check-
sum to the data you specify.

Page 202

U.P.M.A.C.S. SCL Language Reference Command Reference

Unlike the PROMPT command, you must not end the list of expressions with a semicolon or
comma.

Once you used the SABUSREPLY or SABUSERROR commands, the uplink port is released,
and you may not use SABUSREPLY or SABUSERROR again. If you already used
SABUSREPLY or SABUSERROR to respond to the command, SABUSREPLY generates an er-
ror.

If any expression in the list contains non-printable characters (ASCIl $00-$1F or $7F-$FF),
SABUSREPLY generates an error.

This command is only available within programs for SABus commandes.

B The SABUSERROR Command

Sends a reply to an uplink port that executed an SABus command.

Syntax:
SABUSERROR list of expressions

Programs of SABus commands use the SABUSERROR command to send an error response
to the uplink port that invoked the command.

SABUSERROR is followed by a list of expressions of any type (numerical, string, or Boolean),
separated by commas or semicolons. String expressions are included in the response as
is. Numbers are written out in decimal format, using exponential notation whenever nec-
essary. Boolean values are included as “true” or “false.”

Expressions separated by a semicolon are placed immediately next to each other, ex-
pressions separated by a comma in the list are separated by a space character.

It is not necessary to specify the packet header and footer for the response packet in the
command. SABUSERROR automatically adds the NAK, address, opcode, ETX, and check-
sum to the data you specify.

Unlike the PROMPT command, you must not end the list of expressions with a semicolon or
comma.

Once you used the SABUSERROR or SABUSREPLY commands, the uplink port is released,
and you may not use SABUSERROR or SABUSREPLY again. If you already used
SABUSERROR or SABUSREPLY to respond to the command, SABUSERROR generates an er-
ror.

If any expression in the list contains non-printable characters (ASCIl $00-$1F or $7F-$FF),
SABUSERROR generates an error.

This command is only available within programs for SABus commands.

B The RTSSEND Command

Sends a message to the computer that invoked an RTS control.

Syntax:
RTSSEND list of expressions

RTSSEND is followed by a list of expressions of any type (numerical, string, or Boolean),
separated by commas or semicolons. String expressions are sent directly. Numbers are

Page 203

U.P.M.A.C.S. SCL Language Reference Command Reference

sent in decimal format, using exponential notation whenever necessary. Boolean values
are sent as “true” or “false.”

Expressions separated by a semicolon are sent immediately next to each other, expres-
sions separated by a comma are sent with a tab separating them.

Unlike the PROMPT command, you must not end the list of expressions with a semicolon or
comma.

This command is only available within RTS controls.

B The RTSERROR Command

Sends a user error message to the computer that invoked an RTS control.

Syntax:
RTSERROR list of expressions

RTSERROR is followed by a list of expressions of any type (numerical, string, or Boolean),
separated by commas or semicolons. String expressions are sent directly. Numbers are
sent in decimal format, using exponential notation whenever necessary. Boolean values
are sent as “true” or “false.”

Expressions separated by a semicolon are sent immediately next to each other, expres-
sions separated by a comma are sent with a tab separating them.

Unlike the PROMPT command, you must not end the list of expressions with a semicolon or
comma.

This command is only available within RTS controls.

Legacy Object Commands

B The SENDREPLY Command

Sends a pre-defined reply to a serial device that uses a legacy device driver.

Syntax:
SENDREPLY port_tag$,device_tag$,reply_tag$

Arguments:
port_tag$: the tag of the serial port the reply’s device is attached to

device_tag$: the tag of the device to send the reply to
reply_tag$: the tag of the reply

If you have requested exclusive access to any serial ports using the GRAB command, you
cannot send replies to any ports other than the ones you have exclusive access to. If you
do not have exclusive access to any ports, you can send replies to any port you like.

If port_tag$ is not the tag of a serial port, device_tag$ is not the tag of a device on the
port that uses a legacy device driver, or reply_tag$ is not the tag of a reply in that
driver, SENDREPLY generates an error.

Page 204

U.P.M.A.C.S. SCL Language Reference Command Reference

If you have exclusive access to any serial ports, but not to the specified serial port,
SENDREPLY generates an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data.

B The DISABLEMSG Command

Disables a legacy device driver message for a device.

Syntax:
DISABLEMSG port_tag$,device tag$,message tag$

Arguments:
port_tag$: the tag of the serial port the message’s device is attached to

device_tag$: the tag of the device of the message
message_tag$: the tag of the message

If you have requested exclusive access to any serial ports using the GRAB command, you
cannot disable messages on any ports other than the ones you have exclusive access to.
If you do not have exclusive access to any ports, you can disable messages on any port
you like.

Disabling a device message of a disabled device has no immediate effect. Once the
device is re-enabled, however, messages disabled using the DISABLEMSG will remain dis-
abled, whereas enabled messages will become enabled.

If port_tag$ is not the tag of a serial port, device_tag$ is not the tag of a device on the
port that uses a legacy device driver, or message_tag$ is not the tag of a message in
that driver, DISABLEMSG generates an error.

If you have exclusive access to any serial ports, but not to the specified serial port,
DISABLEMSG generates an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data.

B The ENABLEMSG Command

Enables a legacy device driver message for a device.

Syntax:
ENABLEMSG port_tag$,device tag$,message tag$

Arguments:
port_tag$: the tag of the serial port the message’s device is attached to

device_tag$: the tag of the device of the message
message_tag$: the tag of the message

If you have requested exclusive access to any serial ports using the GRAB command, you
cannot enable messages on any ports other than the ones you have exclusive access to.
If you do not have exclusive access to any ports, you can enable messages on any port
you like.

Page 205

U.P.M.A.C.S. SCL Language Reference Command Reference

Enabling a device message of a disabled device has no immediate effect. Once the
device is re-enabled, however, enabled messages will become enabled with it, whereas
messages disabled using the DISABLEMSG will remain disabled.

If port_tag$ is not the tag of a serial port, device_tag$ is not the tag of a device on the
port that uses a legacy device driver, or message_tag$ is not the tag of a message in
that driver, ENABLEMSG generates an error.

If you have exclusive access to any serial ports, but not to the specified serial port,
ENABLEMSG generates an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data.

B The SETPARAM Command

Sets the value of a legacy parameter.

Syntax:
SETPARAM tag$,data

or
SETPARAM tag$,data$

or

SETPARAM tag$,data%

Arguments:

tag$: the tag of the parameter

data, data$, data%: the data to setthe parameter to

SETPARAM can be used to set the value of a parameter.
If the data is a string, it is copied exactly into the parameter’s value.

If the data is a number, it is written out in the parameter in a fashion suitable for the
PARAM function and for parameter sources of analog and digital registers.

If the data is a Boolean, the parameter’s value is set to “ON” if data% is true, and to
“OFF” if it is false. This is suitable for the PARAM$ function and for parameter sources of
bistate registers.

If tag$ is not the tag of a parameter, PARAM$ generates an error.

This command is not available within programs for sources, checksums, and SABus re-
sponse data.

Obsolete Commands

These commands are obsolete and should not be used:

» The INPUT Command (Use dialogs instead.)

Page 206

U.P.M.A.C.S. SCL Language Reference Appendix A: Alphabetical List of Keywords

APPENDICES

Appendix A: Alphabetical List of Keywords

A D F
ABS DAY FALSE%
ADDLITEM DECODE$ FILELOG
ADDMITEM DECODE% FILELOGB
ANAGL DECODE FILELOGC
ANAHIGH DECODEREGEX$ FILELOGG
ANALOW DELAY FILELOGM
ANAMAX DELLITEM FILELOGR
ANAMIN DELMITEM FILELOGY
ANAVAL DIALOG FLEN
AND DIGVALS$ FMTS$
APPENDCSTR DIGVAL FOR
APPENDENC DISABLECMD FPOS
APPENDHEX DISABLEDRV
APPENDSTR DISABLEMSG
ASCII DLGERROR G
ASK DLGLINE GMT
DLGTEXT GOSUB
DLGTITLE GOTO
B DO GRAB
BCDFMT$ DRVCALL
BCDVAL DRVDATAS$
BEFMTS$ DRVENABLED% H
BEVAL DRVERROR$ HCNVS$
BINFMTS$ DRVERROR% HEXFMT$
BINVAL DRVERROR HEXFMT2$
BSTDLY DRVNDATA$ HEXVAL
BSTVAL% DRVNERROR$ HIDE
BUFFER$ DRVNERROR HILOFMT$
BUFFER DRVOBJERR% HILOVAL
BUTTON DRVOBJGL HRS
BUTTONO DRVOBJHIGH
DRVOBJLOW
DRVOBJIMASK% |
C DRVOBJVAL$ IE
CALL DRVOBJVAL% INEO
CALLRMT DRVOBJVAL INPUT#
CANCELBTN DRVPRM$ INPUT
CCNV$ DRVPRWM% INTEDIT
CHKBOX DRVPRM INTMASK
CHKSUM$ DRVREADY% INTUNMASK
CHKSUM DRVRUN INTVHRSS$
CHKSUMHILO DRVSUCCESS% INTVMINSS
CHKSUMLOHI DRVTIMEOUT% ISTRS
CHR$ IVAL
CLOSE E
CLRANAMAX
CLRANAMIN ELSE J
CLRLITEMS ELSEIF
CLRMITEMS ENABLECMD
CMDENABLED% ENABLEDRV K
CONFIRM ENABLEMSG
CONNECT ENCODE$
CoS END o L
COUNTLITEMS ENDD
COUNTMITEMS ENDIF té#?ﬁ:
CRC16 ERRMSG
CRéan EXP LEFMTS
LEFTS$
CRCCCITT LEN
LEVAL

Page 207

U.P.M.A.C.S. SCL Language Reference

Appendix A: Alphabetical List of Keywords

LIMITFLEN
LIST
LISTO
LISTW
LISTWO
LITEMS$
LITEM
LITEMEX1STS%
LN

LOG
LOG10
LOG2
LOGB
LOGC
LOGG
LOGM
LOGR
LOGY
LOHIFMT$
LOHIVAL
LRC$
LRCHILO
LRCLOHI

M

MASK
MASKDRVOBJ
MAXL I TEM
MAXMITEM
MENU

MENUO

MID$

MINS

MITEM$
MITEM
MITEMEX1STS%
MITEQ$

MKT IME

MOD

MON$

MON

MONAB$
MSGENABLED%

N

NETUP%
NEXT
NOT
NUMEDIT

o)

OCTFMT$
OCTVAL
OFFLOGSTR$
ON
ONLOGSTR$
OPEN

OR

P

PARAM$
PARAM%
PARAM
PARSEDEC
PARSEREGEX
Pl

POS
PRGNAMES$
PRINT#
PRINT
PRNCHKSUM$
PROMPT
PVAR$
PVAR%
PVAR
PWDEDIT
PWDEDITO

Q
QUTS

R

RDBTN

RDGRP

RDGRPO

REGERR%
REGEXEND
REGEXPOS
REGHIDDEN%
REGMASK%
REGNAME$
REGSTAT%
RELEASE

REM

REPEAT

RESUME

RET$

RETURN

REVERT INDRANGE
REVERTOFFLOGSTR
REVERTONLOGSTR
REVERTREGNAME
RIGHTS$

RND

RNDDWN

RNDUP

RTSERROR
RTSPRM$
RTSSEND

RUN

RUNRMT

S

SABUSERROR
SABUSREPLY
SASCI 1
SBEVAL

SECS

SENDBIN
SENDCMD
SENDREPLY
SENDSTR
SETANAMAX
SETANAMIN
SETANAVAL
SETANAVALGL
SETANAVALS
SETANAVALSGL
SETBSTDLY
SETBSTVAL
SETDIGVAL
SETDRVOBJVAL
SETDRVOBJVALGL
SETDRVOBJVALS

Page 208

SETDRVOBJVALSGL
SETFPOS
SETINDRANGE
SETLITEM
SETMITEM
SETOFFLOGSTR
SETONLOGSTR
SETPARAM
SETPVAR
SETREGNAME
SETSTRVAL
SHILOVAL
SIN

SKIPDEC
SKIPREGEX
SLEVAL
SLIST
SLISTO
SLISTW
SLISTWO
SLOHIVAL
SQRT
STARTNET
STEP
STOPNET
STR$
STREDIT
STREDITO
STRVALS
SUSPEND
SUSPENDED%

T

TAB$

TAN

THEN

TIMES$

TIME

TO

TRIGGER$
TRIGGERDRV$
TRIGGERMSG$
TRIGGERPRM$
TRIGGERPRM%
TRIGGERPRM
TRUE%

U

UNHIDE
UNMASK
UNMASKDRVOBJ
UNTIL

USR$

USRLVL
USRPRV%

\'%
VAL

w

WHILE
WKDAY$
WKDAY
WKDAYAB$

U.P.M.A.C.S. SCL Language Reference Appendix A: Alphabetical List of Keywords

XOR YR

Page 209

U.P.M.A.C.S. SCL Language Reference Appendix B: List of Error Messages

Appendix B: List of Error Messages

= Array has wrong number of dimensions
The array you specified does not have the required number of dimensions (indices).

= Array name expected
The name of an array variable was expected but not found.

= Array subscript expected
An array variable was not followed by a subscript list.

= Array too large
The array has too many elements.

= Assignment operator expected
An assignment was missing the = sign.

= Bad C-style string
The string you specified contained an invalid or incomplete backslash (“\”) escape se-
quence.

= Bad expression list termination

The expression list for an INFO, ERRMSG, LOG, LOGR, LOGG, LOGB, LOGC, LOGY, LOGM,
FILELOG, FILELOGR, FILELOGG, FILELOGB, FILELOGC, FILELOGY, FILELOGM, SABUSREPLY,
SABUSERROR, RTSSEND or RTSERROR command was terminated with a semicolon or a
comma.

= Bad hex value string
The string you specified is not a series of double-digit hex numbers separated by spaces.

= Bad regular expression
The string you specified is not a valid regular expression. Note that in some instances,
regular expressions that match an empty string are not valid.

= Binary operator expected
A binary operator in an expression is missing.

* Boolean decoder expected
The decoder number of a Boolean decoder was expected, but you specified the num-
ber of a string or numerical decoder.

* Boolean expected
A Boolean variable was expected, but a numerical or string variable was found.

= Boolean Variable expected
A Boolean variable was expected, but a numerical or string variable was found.

= Byte (-128 to 127 or 0 to 255) expected
A byte value was expected, but a string or Boolean value or a numerical value that was
not a byte value was found.

= Command or assignment expected
A command or an assignment was expected but not found.

U.P.M.A.C.S. SCL Language Reference Appendix B: List of Error Messages

= Device driver object is wrong type
The specified data object is of the wrong type (e.g. you specified a string data object
where an analog data object was required.).

= Device driver parameter is wrong type
The device driver parameter you specified does not have the type the function expects.

= Dialog list has no item with that number
The dialog list associated with the variable you specified does not have an item with the
specified index.

» Dialog list item command or function outside dialog subroutine
You tried to access or change a dialog list's items outside the dialog's callback subrou-
tine.

» Dialog list item command or function variable not used in dialog
A variable associated with a dialog list was expected, but the variable you specified is
not associated with any dialog items.

» Dialog menu has no item with that number
The dialog menu associated with the variable you specified does not have an item with
the specified index.

» Dialog menu item command or function outside dialog subroutine
You tried to access or change a dialog menu’'s items outside the dialog's callback sub-
routine.

* Dialog menu item command or function variable not used in dialog
A variable associated with a dialog menu was expected, but the variable you specified
is not associated with any dialog items.

*» Dialog object is not a list
A variable associated with a dialog list was expected, but the variable you specified is
associated with a dialog item that is not a list.

= Dialog object is not a menu
A variable associated with a dialog menu was expected, but the variable you specified
is associated with a dialog item that is not a menu.

= Digit expected
A number contained a non-digit.

»= Division by zero
An operation required a division by zero.

= "DLGERROR" outside dialog subroutine
The DLGERROR command was found outside a dialog callback subroutine.

= "DLGERROR" variable not used in dialog
The variable specified in an DLGERROR command was not associated with any dialog
item.

= "DO" without "WHILE"
The DO keyword was found outside of a WHILE statement.

= Duplicate "ELSE"
more than one ELSE command was used in a single 1F-THEN-ENDIF block.

U.P.M.A.C.S. SCL Language Reference Appendix B: List of Error Messages

= Duplicate file number
A file with the specified file number is already open.

= Duplicate line number
A line with the specified line number already exists.

* Duplicate port
The same serial port was specified more than once in a GRAB command.

= Duplicate program argument
Two arguments with the same name were specified in a CALL or RUN command.

= "ELSE" without "IF"
The ELSE keyword was found outside of an IF-THEN-ENDIF block.

= "ENDDO" without "DO"
The ENDDO keyword was found without a previous WHILE statement.

= "ENDIF" without "IF"
The ENDIF keyword was found without a previous IF statement.

= Expression is not a variable
The name of a variable was expected, but an expression was found.

= Expression is not an array
The name of an array was expected, but an expression was found.

* File not open
The file number you specified not correspond to any open file or network connection.

* File was opened for reading only
You tried to write to a file that was opened for reading only.

» File was opened for writing only
You tried to read from a file that was opened for writing only.

» I|dentifier is not a function
Function parameters were specified for an identifier that is not a function.

» |dentifier is not an array
An array subscript was specified for an identifier that is not an array.

= |llegal array subscript
The value specified as an array index was out of range, or contained a decimal point.

= lllegal character
A character was encountered that is not used in SCL.

= lllegal command for device driver program
You tried to use a command that accesses a register or a legacy parameter in a device
driver program.

» lllegal digit
A digit other than 0 and 1 was used in a binary number, or the digit 8 or 9 was used in an
octal number.

U.P.M.A.C.S. SCL Language Reference Appendix B: List of Error Messages

= lllegal function for device driver program
You tried to use a function that accesses a register or a legacy parameter in a device
driver program.

» |llegal line number
The line number was out of range, or contained a decimal point.

* |llegal value
The value specified can not be used for the required purpose.

* Inappropriate command
A command was encountered that is not available for the use of the SCL program (e.g.
you used PRINT in a program for a summary source.).

= |nappropriate function
A function was encountered that is not available for the use of the SCL program (e.g.
you used RTSPARAM$ but the program that is not an RTS control.).

= "INPUT#" needs length for network connection
You failed to specify a data length when using the INPUT command to get data from a
network connection.

* Integer (-2,147,483,648 to 2,147,483,647) expected
A 32 bit integer value was expected, but a string or Boolean value or a numerical value
that was not an integer was found.

= Maximum number of instructions exceeded
The instruction limit placed on the program has been exceeded. Programs for processor
and summary sources are limited to 500 instruction unless otherwise specified.

= Misplaced array subscript
A left square bracket was found where it is not appropriate.

» Misplaced binary operator
A binary operator (+, -, *, /, ©, AND, OR, XOR) was found where it is not appropriate.

* Misplaced command
A command was found where it is not appropriate.

= Misplaced command separator
A colon was found where it is not appropriate.

= Misplaced decimal point
A decimal point was used in a hexadecimal or binary number.

* Misplaced "ELSE"
An ELSE command was found in a single command IF-THEN statement or a single
command WHILE-DO loop.

= Misplaced "ELSEIF"
An ELSEIF command was found in a single command IF-THEN statement or a single
command WHILE-DO loop.

= Misplaced "ENDDQ"
An ENDDO command was found in a single command IF-THEN statement or a single
command WHILE-DO loop.

U.P.M.A.C.S. SCL Language Reference Appendix B: List of Error Messages

= Misplaced "ENDIF"
An ENDIF command was found in a single command IF-THEN statement or a single
command WHILE-DO loop.

= Misplaced exponent
An exponent was used in a binary number.

= Misplaced line continuation character ("\\")
A line continuation character was found in the middle of a line.

* Misplaced "LITEM"
An LITEM command was found without a previous dialog list command.

= Misplaced "MITEM"
An MITEM command was found without a previous dialog menu command.

= Misplaced parameter separator (*,")
A comma was found where it is not appropriate.

= Misplaced print list separator (*;")
A semicolon was found outside of an expression list.

= Misplaced "RDBTN"
An RDBTN command was found without a previous dialog radio button command.

= Misplaced remark
A REM keyword was found where it is not appropriate.

= Misplaced sign
A plus or minus sign was found where it is not appropriate.

= Misplaced "UNTIL"
An UNTIL command was found in a single command IF-THEN statement or a single
command WHILE-DO loop.

= Misplaced value
A value or expression was encountered where it is not appropriate.

= Missing array hame
A parameter list was encountered, but no array name.

= Missing "DO"
The DO keyword in a WHILE command was not found.

= Missing "ENDDO"
A WHILE-DO loop was not terminated by an ENDDO.

* Missing "ENDIF"
An IF-THEN-ENDIF block was not terminated by an ENDIF.

= Missing "GOTQO" or "GOSUB"
The GOTO or GOSUB keyword in an ON..GOTO or ON..GOSUB command was not found.

* Missing "THEN"
The THEN keyword in an IF or ELSEIF command was not found.

U.P.M.A.C.S. SCL Language Reference Appendix B: List of Error Messages

= Missing "TO"
The TO keyword in a FOR command was not found.

= "NEXT" without "FOR"
The NEXT keyword was found without a corresponding FOR statement.

= Network connection has no size or position
You tried to access the size or position of a file that was really a network connection.

* Number expected
A numeric value or expression was expected, but a string or Boolean expression was
found.

= Numerical decoder expected
The decoder number of a numerical decoder was expected, but you specified the
number of a string or Boolean decoder.

* Numerical variable expected
A numerical variable was expected, but a string or Boolean variable was found.

= Overflow
An operation resulted in a value that is too large to be handled by SCL.

= Parameter list expected
A function call was missing its parameter list.

= Port not grabbed
The program has requested exclusive access to a number of serial ports and is attempt-
ing to access a port other than the ones it requested.

»= Positive integer (1 to 4,294,967,295) expected
A positive unsigned 32 bit integer value was expected, but a string or Boolean value or a
numerical value that was not a positive unsigned integer was found.

= Register is wrong type
The specified register is of the wrong register type (e.g. you specified a string register
where an analog register was required.).

= "RELEASE" without "GRAB"
The RELEASE keyword was found but no ports have been grabbed.

= "RETURN" without "GOSUB"
The RETURN keyword was found outside of a subroutine.

= Second "CANCELBTN"
A CANCELBTN command was encountered, but the dialog currently being constructed
already has a cancel button.

= Second "GRAB"

A GRAB command was encountered, but the program already has exclusive access to
some serial ports because of a GRAB statement in this program, or in a program that
called this program using the CALL command.

= Second "SABUSREPLY" or "SABUSERROR"
An SABUSREPLY or SABUSERROR command was encountered, but a reply has already
already been sent using one of those two commands.

U.P.M.A.C.S. SCL Language Reference Appendix B: List of Error Messages

= Single statement after "ELSEIF"
An ELSIF command was followed by a single command or assignment. ELSEIF must be
followed by a block of code.

= "STEP" without "FOR"
The STEP keyword was found outside of a FOR statement.

= String contains non-printable characters
A string containing non-printable characters (ASCIl $00-$1F or $7F to $FF) was encoun-
tered in an SABUSREPLY or SABUSERROR command.

= String decoder expected
The decoder number of a string decoder was expected, but you specified the number
of a numerical or Boolean decoder.

= String expected
A string value or expression was expected, but a numerical or Boolean expression was
found.

= String Variable expected
A string variable was expected, but a numerical or Boolean variable was found.

» Superfluous array subscript
You specified a subscript for an array where you should only have specified the array's
name.

= Syntax error
The syntax of a statement was incomprehensible.

= "THEN" without "IF"
The THEN keyword was found outside of an IF statement.

» "TO" without "FOR"
The TO keyword was found outside of a FOR statement.

* Too few arguments
The command requires more arguments.

* Too few indices
The array requires more indices.

= Too few parameters
The function requires more parameters.

= Too many arguments
The command does not allow that many arguments.

* Too many indices
The array does not require that many indices.

= Too many parameters
The function does not take that many parameters.

= Trigger object parameter is wrong type
The trigger object parameter you specified does not have the type the function expects.

* Type mismatch
Two types (numeric, string, Boolean) that are required to match do not match.

U.P.M.A.C.S. SCL Language Reference Appendix B: List of Error Messages

= Unexpected end of line
The line of code is incomplete.

= Unknown application
The specified application could not be found, or could not be launched for other rea-
sons.

= Unknown decoder
No data decoder with the specified decoder number exists.

= Unknown device command
The device driver does not contain a command with the specified tag.

= Unknown device driver
No device driver with the specified tag exists.

= Unknown device driver object
The device driver does not contain a data object with the specified tag.

= Unknown device driver parameter
The device driver the program belongs to does not have a parameter with the specified
tag.

= Unknown device message
The device driver does not contain a legacy device message with the specified tag.

= Unknown device reply
The device driver does not contain a legacy device reply with the specified tag.

* Unknown device response
The device driver does not contain a legacy device response with the specified tag.

= Unknown encoder
No data encoder with the specified encoder number exists.

= Unknown line number
The specified line number does not exist.

= Unknown parameter
No legacy parameter with the specified tag exists.

= Unknown register
No register with the specified tag exists.

= Unknown SCL program
No SCL program with the specified tag exists.

= Unknown serial port
No serial port with the specified tag exists.

= Unknown trigger object parameter
The trigger of the program does not have a parameter with the specified tag.

* Unmatched left parenthesis ("(")
A left parenthesis without a corresponding right parenthesis was encountered.

* Unmatched right parenthesis ()")
A right parenthesis without a corresponding left parenthesis was encountered.

U.P.M.A.C.S. SCL Language Reference Appendix B: List of Error Messages

= Unmatched start array subscript character ("[")
The right square bracket of an array subscript list was missing.

= Unmatched string delimiter (double quotes)
The closing quotes for the string are missing.

= Unsigned integer (0 to 4,294,967,295) expected
An unsigned 32 bit integer value was expected, but a string or Boolean value or a nu-
merical value that was not an unsigned integer was found.

= "UNTIL" without "REPEAT"
The UNTIL keyword was found without a previous REPEAT statement.

= Value expected
A value was expected but not found.

= Variable is not an array
An array nhame was expected, but the variable you specified is not an array.

= Variable name expected
A variable name was expected but not found.

= Wrong "NEXT" variable
The variable specified in the NEXT statement was not the same as that specified in the
last FOR statement.

U.P.M.A.C.S. Operator’s Manual

Contact Information

CONTACT INFORMATION

U.P.M.A.C.S. Communications Inc.

714, 36th Ave., Suite 301
Lachine, QC, Canada
H8T 3L8

Tel: 1-514-697-5500

Toll free: 1-877-697-5500 (Canada & US only)
E-Mail: support@upmacs.com

UPMACS is on the Web at http://www.upmacs.com

This manual and the U.P.M.A.C.S. software package are
©2012 by UPMACS Communications Inc.

mailto:support@upmacs.com
http://www.upmacs.com/

	Table of Contents
	The SCL Programming Language
	Introduction

	Language Components
	Remarks
	Literal Values
	Numbers
	Strings

	Constants
	Reserved Variables
	User Variables
	Arrays
	Indices
	Creating Arrays
	Accessing Elements

	Functions
	Mathematical Expressions
	Operator Priority

	Assignments
	Commands

	Programming Methods
	Program Arguments
	Conditional Statements
	Single Command Conditions
	IF-THEN-ENDIF Blocks

	Line Numbers, Jumps, and Subroutines
	Line Numbers
	Jumps
	Subroutines
	Multibranching

	Loops
	WHILE-DO Loops
	REPEAT-UNTIL Loops
	FOR-NEXT Loops

	Messages to the User
	When to Use Which Command

	Dialogs
	How Dialogs Work
	Dialog Items
	Dialog Buttons
	The Result Variable
	The Button Callback
	 Perform validation of data the user entered
	 Perform an action that does not close the dialog

	Time and Date
	File Input and Output and Network Connections
	File Input and Output
	Network Connections

	Decoding and Encoding Data
	Decoding or Encoding a Single Value
	Decoding a Sequence of Values from a String
	Encoding a Sequence of Values to a String

	Serial Communication
	Sending Commands
	Synchronizing Port Access

	Programs for Sources, Checksums, and SABus Response Data
	Accessing the Data (Processor Sources and Checksums Only)
	Specifying the Data Object/Register Value or Checksum
	 Checksums
	 Serial Data Objects and Registers
	 SABus Response Data Objects
	Restrictions on Functions and Commands

	Programs for SABus Commands
	Restrictions on Functions and Commands

	Device Driver Programs
	 Registers and legacy parameters
	 Serial ports and devices
	 SCL programs

	Invoking SCL Programs From Within an SCL Program
	Executing Programs On a Remote Computer

	RTS Controls
	Restrictions on Functions and Commands

	Reserved Variable Reference
	Serial Communication Reserved Variables
	Miscellaneous Reserved Variables
	Special Purpose Reserved Variables
	Legacy Object Reserved Variables

	Function Reference
	Mathematical Functions
	String Manipulation Functions
	String Conversion Functions
	Data Decoding/Encoding Functions
	Checksum Functions
	Time and Date Functions
	Dialog Button Callback Functions
	File Functions
	Register Functions
	Serial Communication Functions
	Serial Device Object Functions
	Miscellaneous Functions
	Special Purpose Functions
	Legacy Object Functions
	Obsolete Functions

	Command Reference
	Flow Control Commands
	User Message Commands
	Dialog Commands
	Dialog Button Callback Commands
	File and Network Connection Commands
	If file_number is a file:
	If file_number is a network connection:

	Register Commands
	Serial Communication Commands
	Sending Custom Commands to Devices That Use Legacy Device Drivers
	Sending Custom Commands to Devices That Use Legacy Device Drivers

	Serial Device Object Commands
	Logging Commands
	Data Encoding/Decoding Commands
	Miscellaneous Commands
	Special Purpose Commands
	Legacy Object Commands
	Obsolete Commands

	Appendices
	Appendix A: Alphabetical List of Keywords
	Appendix B: List of Error Messages
	 Array has wrong number of dimensions
	 Array name expected
	 Array subscript expected
	 Array too large
	 Assignment operator expected
	 Bad C-style string
	 Bad expression list termination
	 Bad hex value string
	 Bad regular expression
	 Binary operator expected
	 Boolean decoder expected
	 Boolean expected
	 Boolean Variable expected
	 Byte (-128 to 127 or 0 to 255) expected
	 Command or assignment expected
	 Device driver object is wrong type
	 Device driver parameter is wrong type
	 Dialog list has no item with that number
	 Dialog list item command or function outside dialog subroutine
	 Dialog list item command or function variable not used in dialog
	 Dialog menu has no item with that number
	 Dialog menu item command or function outside dialog subroutine
	 Dialog menu item command or function variable not used in dialog
	 Dialog object is not a list
	 Dialog object is not a menu
	 Digit expected
	 Division by zero
	 "DLGERROR" outside dialog subroutine
	 "DLGERROR" variable not used in dialog
	 "DO" without "WHILE"
	 Duplicate "ELSE"
	 Duplicate file number
	 Duplicate line number
	 Duplicate port
	 Duplicate program argument
	 "ELSE" without "IF"
	 "ENDDO" without "DO"
	 "ENDIF" without "IF"
	 Expression is not a variable
	 Expression is not an array
	 File not open
	 File was opened for reading only
	 File was opened for writing only
	 Identifier is not a function
	 Identifier is not an array
	 Illegal array subscript
	 Illegal character
	 Illegal command for device driver program
	 Illegal digit
	 Illegal function for device driver program
	 Illegal line number
	 Illegal value
	 Inappropriate command
	 Inappropriate function
	 "INPUT#" needs length for network connection
	 Integer (-2,147,483,648 to 2,147,483,647) expected
	 Maximum number of instructions exceeded
	 Misplaced array subscript
	 Misplaced binary operator
	 Misplaced command
	 Misplaced command separator
	 Misplaced decimal point
	 Misplaced "ELSE"
	 Misplaced "ELSEIF"
	 Misplaced "ENDDO"
	 Misplaced "ENDIF"
	 Misplaced exponent
	 Misplaced line continuation character ("\\")
	 Misplaced "LITEM"
	 Misplaced "MITEM"
	 Misplaced parameter separator (",")
	 Misplaced print list separator (";")
	 Misplaced "RDBTN"
	 Misplaced remark
	 Misplaced sign
	 Misplaced "UNTIL"
	 Misplaced value
	 Missing array name
	 Missing "DO"
	 Missing "ENDDO"
	 Missing "ENDIF"
	 Missing "GOTO" or "GOSUB"
	 Missing "THEN"
	 Missing "TO"
	 "NEXT" without "FOR"
	 Network connection has no size or position
	 Number expected
	 Numerical decoder expected
	 Numerical variable expected
	 Overflow
	 Parameter list expected
	 Port not grabbed
	 Positive integer (1 to 4,294,967,295) expected
	 Register is wrong type
	 "RELEASE" without "GRAB"
	 "RETURN" without "GOSUB"
	 Second "CANCELBTN"
	 Second "GRAB"
	 Second "SABUSREPLY" or "SABUSERROR"
	 Single statement after "ELSEIF"
	 "STEP" without "FOR"
	 String contains non-printable characters
	 String decoder expected
	 String expected
	 String Variable expected
	 Superfluous array subscript
	 Syntax error
	 "THEN" without "IF"
	 "TO" without "FOR"
	 Too few arguments
	 Too few indices
	 Too few parameters
	 Too many arguments
	 Too many indices
	 Too many parameters
	 Trigger object parameter is wrong type
	 Type mismatch
	 Unexpected end of line
	 Unknown application
	 Unknown decoder
	 Unknown device command
	 Unknown device driver
	 Unknown device driver object
	 Unknown device driver parameter
	 Unknown device message
	 Unknown device reply
	 Unknown device response
	 Unknown encoder
	 Unknown line number
	 Unknown parameter
	 Unknown register
	 Unknown SCL program
	 Unknown serial port
	 Unknown trigger object parameter
	 Unmatched left parenthesis ("(")
	 Unmatched right parenthesis (")")
	 Unmatched start array subscript character ("[")
	 Unmatched string delimiter (double quotes)
	 Unsigned integer (0 to 4,294,967,295) expected
	 "UNTIL" without "REPEAT"
	 Value expected
	 Variable is not an array
	 Variable name expected
	 Wrong "NEXT" variable

	Contact Information
	U.P.M.A.C.S. Communications Inc.

