
RTS Protocol Description UPMACS Communications Inc.

RTS PROTOCOL DESCRIPTION

Introduction
The RTS protocol allows any program to execute SCL controls on an
U.P.M.A.C.S. station via a socket TCP connection. Special SCL Commands
and functions are used to read parameters supplied with the request, and
to send responses to the RTS client.

 Connection Mechanism
RTS supports two distinct connection mechanisms:

Single Control Connections
A separate TCP connection is used for each control. The connection is es-
tablished by the client, the request to execute the control is sent, and any
replies are received. When the control has terminated, the server drops
the connection.

Multiple Control Connections
A single TCP connection can be used to execute multiple controls. The
connection is first established by the client. Requests to execute controls
can then be sent at any time, and any replies are received. It is not nec-
essary to wait for one control to finish before executing the next; multiple
controls can be running concurrently. When a control terminates, the cli-
ent is notified via a special “control done” packet. The connection will
remain open until the client drops it, the server shuts down (U.P.M.A.C.S.
quits), or a badly formatted request packet is received.

The RTS client can use whichever mechanism is more convenient. Multiple
connections of either type can be open simultaneously.

 Request Parameters
An RTS request can have any number of parameters, which will be avail-
able to the SCL control. The parameters can contain arbitrary data, and
are accessed as strings from within SCL. (SCL strings can contain any
characters, including NULL characters.) The decoding of the parameter
data is left up to the SCL control.

SCL supports encoding and decoding of numerical data using a variety of
data formats, including signed and unsigned single-byte and multi-byte
values in both low-high and high-low byte ordering. It also supports BCD
(binary coded decimal) encoding, as well as numbers written out in ASCII
characters using decimal, hexadecimal, binary, or octal base.

Page 1

RTS Protocol Description UPMACS Communications Inc.

To transmit integer or fixed point numbers, the RTS client can choose
whichever encoding is most convenient. For floating point numbers, how-
ever, SCL only supports decimal numbers written out in ASCII characters.
Exponential notation (“1.2E+03”, etc.) is not supported.

 Reference Number
The RTS client must specify a reference number for each RTS request. The
reference number is not used by U.P.M.A.C.S., but it is included in any re-
ply or error message that pertains to that request. The client may use the
reference number as it wishes. The reference number does no have to be
unique, but please note that if you execute more than one control simul-
taneously using a multiple control connection, the reference number is
the only way to determine which control sent a specific reply.

 RTS Replies
An RTS control can send one or more replies or error messages to the cli-
ent. Each reply or error message contains a single block of data, format-
ted by the SCL control in any fashion it pleases.

The RTS server may also send error messages. These error messages will
contain an error code and a description of the error. For multiple control
connections, a special “control done” message is sent when a control
terminates. “Control done” messages have no data associated with it.

RTS Protocol Description
U.P.M.A.C.S. accepts RTS (and other) socket connections on TCP port
8700. RTS connections are distinguished from other types of connections
using the packet opcode field. The packet opcode field is also used to
distinguish between single control and multiple control connections.

 Length Encoding
U.P.M.A.C.S. has a special way of encoding data lengths. Since all char-
acters, including the NULL character, are valid for RTS parameters and re-
plies, data lengths are used rather than NULL-terminated strings. Data
length is limited to 65535 characters, and is encoded into a 32-bit value as
follows:

encoded_length = length | (length ^ 0x5555) << 16

Page 2

RTS Protocol Description UPMACS Communications Inc.

 Request Packet Format
An RTS request packet has the following format:

Field Length Field Content
8 bits Opcode:

0x04 for single control connections
0x05 for multiple control connections

32 bits Reference number
32 bits Encoded length of program tag
Tag length  8 bits Tag of the program to be executed
32 bits Number of optional parameter blocks
Optional parameter blocks: (one for each parameter)
32 bits Encoded length of parameter data
Data length  8
bits

Parameter data

The opcode of the first packet sent to the server after opening a connec-
tion determines whether the connection is a single or a multiple control
connection.

 Reply Packet Format
An RTS reply packet has the following format:

Field Length Field Content
8 bits Opcode: 0x03
32 bits Reference number
8 bits Error code (see below)
32 bits Encoded length of reply data
Data length  8
bits

Reply data

8 bits Terminating NULL: 0x00

The terminating NULL can be used by the client to read the data without
decoding the data length. Note, however, that an SCL control may send
data with embedded NULL characters in it, since all characters are legal
reply data.

For error codes 0x00 (no error) and 0x05 (user error), the format and mean-
ing of the reply data is determined by the SCL control. For all other error
codes, the reply data is simply a human-readable error message from the
server.

Page 3

RTS Protocol Description UPMACS Communications Inc.

Error Codes
The following error codes may be returned in a reply packet:

0x00 No error: The reply was sent by the SCL control using the RTSSEND
command.

0x01 Bad request packet format: The request packet was badly format-
ted. If this error code is sent by the server, the connection is
dropped immediately, even if it is a multiple control connection.

0x02 Program not found: There is no program with the requested tag in
the current station.

0x03 Request denied: The server is not accepting RTS requests. The
U.P.M.A.C.S. Operate System will only accept RTS requests if you
enable insecure remote control in the Network Security Settings.

0x04 Program error: An SCL program error occurred while executing the
control.

0x05 User error: The reply was sent by the SCL control using the RTSERROR
command.

 “Control Done” Packet Format

A multiple control connection “control done” packet has the following
format:

Field Length Field Content
8 bits Opcode: 0x02
32 bits Reference number

Writing SCL Programs for RTS Controls
The SCL language incorporates one function and two commands for use
with RTS.

Use the RTSPRM$ function to access the parameters specified in the re-
quest packet. Use the RTSSEND command to send a reply packet with er-
ror code 0x00. Use the RTSERROR command to send a reply packet with
error code 0x05.

You can use the string conversion functions if you need to decode nu-
merical data from the RTS parameters, or if you need to encode numeri-
cal data for a reply. You cannot use user interface (message or dialog)
command in programs for RTS controls.

Page 4

RTS Protocol Description UPMACS Communications Inc.

For more information on writing programs for RTS controls, please see RTS
Controls in the SCL Language Reference.

This article and the U.P.M.A.C.S. software package are
©2013 by UPMACS Communications Inc.

Page 5

	RTS Protocol Description
	Introduction
	 Connection Mechanism
	Single Control Connections
	Multiple Control Connections
	 Request Parameters
	 Reference Number
	 RTS Replies

	RTS Protocol Description
	 Length Encoding
	 Request Packet Format
	 Reply Packet Format
	Error Codes
	 “Control Done” Packet Format

	Writing SCL Programs for RTS Controls

