
RTS Protocol Description UPMACS Communications inc.

Page 1

RTS PROTOCOL DESCRIPTION

Introduction

The RTS protocol allows any program to execute SCL controls on an U.P.M.A.C.S.
station via a socket TCP connection. Special SCL Commands and functions are
used to read parameters supplied with the request, and to send responses to the
RTS client.

� Connection Mechanism
RTS supports two distinct connection mechanisms:

Single Control Connections
A separate TCP connection is used for each control. The connection is established
by the client, the request to execute the control is sent, and any replies are re-
ceived. When the control has terminated, the server drops the connection.

Multiple Control Connections
A single TCP connection can be used to execute multiple controls. The connection
is first established by the client. Requests to execute controls can then be sent at
any time, and any replies are received. It is not necessary to wait for one control to
finish before executing the next; multiple controls can be running concurrently.
When a control terminates, the client is notified via a special “control done”
packet. The connection will remain open until the client drops it, the server shuts
down (U.P.M.A.C.S. quits), or a badly formatted request packet is received.

The RTS client can use whichever mechanism is more convenient. Multiple connec-
tions of either type can be open simultaneously.

� Request Parameters
An RTS request can have any number of parameters, which will be available to the
SCL control. The parameters can contain arbitrary data, and are accessed as
strings from within SCL. (SCL strings can contain any characters, including NULL
characters.) The decoding of the parameter data is left up to the SCL control.

SCL supports encoding and decoding of numerical data using a variety of data
formats, including signed and unsigned single-byte and multi-byte values in both
low-high and high-low byte ordering. It also supports BCD (binary coded decimal)
encoding, as well as numbers written out in ASCII characters using decimal, hexa-
decimal, binary, or octal base.

To transmit integer or fixed point numbers, the RTS client can choose whichever
encoding is most convenient. For floating point numbers, however, SCL only sup-
ports decimal numbers written out in ASCII characters. Exponential notation
(“1.2E+03”, etc.) is not supported.

RTS Protocol Description UPMACS Communications inc.

Page 2

� Reference Number
The RTS client must specify a reference number for each RTS request. The refer-
ence number is not used by U.P.M.A.C.S., but it is included in any reply or error
message that pertains to that request. The client may use the reference number as
it wishes. The reference number does no have to be unique, but please note that if
you execute more than one control simultaneously using a multiple control con-
nection, the reference number is the only way to determine which control sent a
specific reply.

� RTS Replies
An RTS control can send one or more replies or error messages to the client. Each
reply or error message contains a single block of data, formatted by the SCL con-
trol in any fashion it pleases.

The RTS server may also send error messages. These error messages will contain
an error code and a description of the error. For multiple control connections, a
special “control done” message is sent when a control terminates. “Control done”
messages have no data associated with it.

RTS Protocol Description

U.P.M.A.C.S. accepts RTS (and other) socket connections on TCP port 8700. RTS
connections are distinguished from other types of connections using the packet
opcode field. The packet opcode field is also used to distinguish between single
control and multiple control connections.

� Length Encoding
U.P.M.A.C.S. has a special way of encoding data lengths. Since all characters, in-
cluding the NULL character, are valid for RTS parameters and replies, data lengths
are used rather than NULL-terminated strings. Data length is limited to 65535
characters, and is encoded into a 32-bit value as follows:

encoded_length = length | (length ^ 0x5555) << 16

RTS Protocol Description UPMACS Communications inc.

Page 3

� Request Packet Format
An RTS request packet has the following format:

Field LengthField LengthField LengthField Length Field ContentField ContentField ContentField Content
8 bits Opcode:

0x04 for single control connections
0x05 for multiple control connections

32 bits Reference number

32 bits Encoded length of program tag

Tag length × 8 bits Tag of the program to be executed

32 bits Number of optional parameter blocks

Optional parameter blocks: (one for each parameter)Optional parameter blocks: (one for each parameter)Optional parameter blocks: (one for each parameter)Optional parameter blocks: (one for each parameter)
32 bits Encoded length of parameter data

Data length × 8 bits Parameter data

The opcode of the first packet sent to the server after opening a connection deter-
mines whether the connection is a single or a multiple control connection.

� Reply Packet Format
An RTS reply packet has the following format:

Field LengthField LengthField LengthField Length Field ContentField ContentField ContentField Content
8 bits Opcode: 0x03

32 bits Reference number

8 bits Error code (see below)

32 bits Encoded length of reply data

Data length × 8 bits Reply data

8 bits Terminating NULL: 0x00

The terminating NULL can be used by the client to read the data without decoding
the data length. Note, however, that an SCL control may send data with embed-
ded NULL characters in it, since all characters are legal reply data.

For error codes 0x00 (no error) and 0x05 (user error), the format and meaning of
the reply data is determined by the SCL control. For all other error codes, the reply
data is simply a human-readable error message from the server.

Error Codes
The following error codes may be returned in a reply packet:

0x00 No error: The reply was sent by the SCL control using the RTSSEND com-
mand.

RTS Protocol Description UPMACS Communications inc.

Page 4

0x01 Bad request packet format: The request packet was badly formatted. If this
error code is sent by the server, the connection is dropped immediately,
even if it is a multiple control connection.

0x02 Program not found: There is no program with the requested tag in the cur-
rent station.

0x03 Request denied: The server is not accepting RTS requests. The U.P.M.A.C.S.
Operate System will only accept RTS requests if you enable insecure remote
control in the Network Security Settings.

0x04 Program error: An SCL program error occurred while executing the control.

0x05 User error: The reply was sent by the SCL control using the RTSERROR
command.

� “Control Done” Packet Format

A multiple control connection “control done” packet has the following format:

Field LengthField LengthField LengthField Length Field ContentField ContentField ContentField Content
8 bits Opcode: 0x02

32 bits Reference number

Writing SCL Programs for RTS Controls

The SCL language incorporates one function and two commands for use with RTS.

Use the RTSPRM$ function to access the parameters specified in the request
packet. Use the RTSSEND command to send a reply packet with error code 0x00.
Use the RTSERROR command to send a reply packet with error code 0x05.

You can use the string conversion functions if you need to decode numerical data
from the RTS parameters, or if you need to encode numerical data for a reply. You
cannot use user interface (message or dialog) command in programs for RTS
controls.

For more information on writing programs for RTS controls, please see RTS Con-
trols in the SCL Language Reference.

This article and the U.P.M.A.C.S. software package are
©2001 by UPMACS Communications, inc.

	Introduction
	Connection Mechanism
	Request Parameters
	Reference Number
	RTS Replies

	RTS Protocol Description
	Length Encoding
	Request Packet Format
	Reply Packet Format
	“Control Done” Packet Format

	Writing SCL Programs for RTS Controls

